tìm GTLN của BT C=\(\frac{1}{|x-2|+3}\)
Tìm GTLN của bt \(\frac{3\left(x+1\right)}{2-\sqrt{x}}\)
Tìm GTLN của các bt sau :
\(F=\frac{1}{2\left|x-1\right|+3}\)
Ta nhận thấy:
\(\left|x-1\right|\ge0\Rightarrow2\left|x-1\right|+3\ge3\)(Dấu "=" xảy ra khi x = 1) => GTNN của 2 | x - 1 | + 3 là 3
\(\text{Để F lớn nhất thì }2\left|x-1\right|+3\text{ phải nhỏ nhất}\)
Lại có GTNN của 2 | x - 1 | + 3 là 3
=> GTLN của F là: 1/3
Chúc bạn học tốt !!!
Dn_x҉K҉r҉a҉k҉e҉n҉Y҉T҉_[★] làm đúng rồi nhé bạn long quyền tiểu tử ạ !!!
tham khảo bài bn ý đc đó !!!
https://olm.vn/thanhvien/daonhatminhphamthuyduong
Bạn đừng trả lời như thế nhé !
Nhiễu diễn đàn lắm
P/s: ad thông cảm do olm h nhiều ng như thế quá
Bài 1:Cho x>0;y>0 và \(x+y\le1\) tìm GTNNc của các bt sau
a,\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}\)
\(b,B=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
Bà 2:Cho x+y=1 tìm GTNN của bt
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
Bài 3:Cho x+y+z=3
a,Tìm GTNN của bt \(A=x^2+y^2+z^2\)
b,Tìm GTLN của bt \(B=xy+yz+xz\)
1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
b/
\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)
\(=16+8+20=44\)
\(\Rightarrow B\ge11\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
2/
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}\ge\frac{\left(1+\frac{4}{x+y}\right)^2}{2}=\frac{25}{2}\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Tìm GTNN, GTLN của bt: \(\frac{x^2-x+1}{x^2+x+1}\)
a0Timf GTNN của bt A=\(\left(2x+\frac{1}{3}\right)^4-1\)
b)Tìm GTLN của bt B=\(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
GIÚP MIK NHA, 5 NGƯỜI ĐẦU ĐÚNG MIK TICK
a) \(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow A\ge-1\)
Dấu \(=\)xảy ra khi \(2x+\frac{1}{3}=0\Leftrightarrow x=-\frac{1}{6}\).
b) \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\Rightarrow B\le3\)
Dấu \(=\)xảy ra khi \(\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow x=\frac{3}{10}\).
Tìm GTNN và GTLN mà
Tìm GTLN của bt A = \(\frac{3x^2}{x^3+1}-\frac{1}{x+1}-\frac{x-1}{x^2-x+1}\).
1, Cho biểu thức :
P=\(\frac{1}{\sqrt{x}+2}-\frac{5}{x-\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}\)
a,Rút gọn bt
b, Tìm GTLN của P
1, Cho x+y=2. Tìm GTLN của bt: P=x4+y4
2, Cho a,b,c là các số dương thỏa mãn a + b + c + ab + bc + ac = 6abc. Tìm GTNN của:
P= \(\frac{1}{a^2}\)+ \(\frac{1}{b^2}\)+ \(\frac{1}{c^2}\)
3, Cho hai số thực không âm thỏa mãn x2+y2 = 4. Tìm GTLN của A = \(\frac{xy}{x+y+2}\)
1 cho biểu thức A=5x(xy^2-2xy)-5x^2y^2. Rút gọn A .b) Tính GT của A khi x=-1/2 ,y=2
2. Tìm GTLN của bt A = |x-7|-|x-9|.Q= |x-2|+|x-8| b) tìm GTLN của bt P= 9-2|x-3|