Những câu hỏi liên quan
AO
Xem chi tiết
NH
Xem chi tiết
KN
17 tháng 7 2020 lúc 20:08

\(BĐT\Leftrightarrow\frac{2-2xy}{2+x^2+y^2}+\frac{2x^2-2y}{1+2x^2+y^2}+\frac{2y^2-2x}{1+x^2+2y^2}\ge0\)

\(\Leftrightarrow1-\frac{2-2xy}{2+x^2+y^2}+1-\frac{2x^2-2y}{1+2x^2+y^2}+1-\frac{2y^2-2x}{1+x^2+2y^2}\le3\)

\(\Leftrightarrow\frac{\left(x+y\right)^2}{2+x^2+y^2}+\frac{\left(y+1\right)^2}{1+2x^2+y^2}+\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le3\)(*)

Theo bất đẳng thức Bunyakovsky dạng phân thức: \(\frac{\left(x+y\right)^2}{2+x^2+y^2}\le\frac{x^2}{1+x^2}+\frac{y^2}{1+y^2}\)(1); \(\frac{\left(y+1\right)^2}{1+2x^2+y^2}\le\frac{y^2}{x^2+y^2}+\frac{1}{x^2+1}\)(2); \(\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le\frac{x^2}{x^2+y^2}+\frac{1}{y^2+1}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{\left(x+y\right)^2}{2+x^2+y^2}+\frac{\left(y+1\right)^2}{1+2x^2+y^2}+\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le\)\(\left(\frac{x^2}{x^2+y^2}+\frac{y^2}{x^2+y^2}\right)+\left(\frac{1}{y^2+1}+\frac{y^2}{y^2+1}\right)+\left(\frac{1}{x^2+1}+\frac{x^2}{x^2+1}\right)=3\)

Như vậy (*) đúng

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi x = y = 1

Bình luận (0)
 Khách vãng lai đã xóa
TL
17 tháng 7 2020 lúc 20:04

\(\frac{1-xy}{2+x^2+y^2}+\frac{x^2-y^2}{1+2x^2+y^2}+\frac{y^2-x}{1+x^2+2y^2}\ge0\)

\(\Leftrightarrow\frac{1-xy+3x^2-2y^2-2y^2+x}{\left(1+x^2+y^2\right)}\ge0\)

\(\Leftrightarrow\frac{2\left(1+x^2+y^2\right)+x^2}{1+x^2+y^2}\ge0\)

Vì x2 và y2 >0

\(\Rightarrow2+\frac{x^2}{1+x^2+y^2}\ge0\)(luôn đúng)

Bình luận (0)
 Khách vãng lai đã xóa
H24
18 tháng 7 2020 lúc 10:25

Bạn nhatt quynhh xem lại bài bạn đi nha. Phô diễn kỹ thuật tí:

Bài này đúng với mọi x, y là các số thực. Thật vậy\(,\)

Bất đẳng thức đã cho tương đương với: (vô thống kê hỏi đáp mình xem LaTex nha, tại olm bị lỗi LaTex)

${\frac {1}{378}}\, \left( x+y-2 \right) ^{4} \left( 29\,{x}^{2}+29\,{y
}^{2}+20 \right) \\+{\frac {1}{378}}\, \left( y+1-2\,x \right) ^{4}
 \left( 20\,{x}^{2}+29\,{y}^{2}+29 \right) +{\frac {1}{378}}\, \left( 
1+x-2\,y \right) ^{4} \left( 29\,{x}^{2}+20\,{y}^{2}+29 \right) \\+\frac{1}{14}
\, \left( {x}^{2}y+x{y}^{2}+{x}^{2}-6\,xy+{y}^{2}+x+y \right) ^{2} \geqslant 0$

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
NL
3 tháng 11 2021 lúc 20:03

Đặt vế trái là P

Ta có: \(P=\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+2\right)-3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+2=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2-3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+2\)

Đặt \(a=\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt[]{\dfrac{xy}{xy}}=2\Rightarrow a-2\ge0\)

\(\Rightarrow P=a^2-3a+2=\left(a-2\right)\left(a-1\right)\ge0\) (đpcm)

Dấu "=" xảy ra khi \(a=2\) hay \(x=y\)

Bình luận (0)
NA
Xem chi tiết
TA
Xem chi tiết
Xem chi tiết
IA
9 tháng 4 2020 lúc 23:16

5x^2+2y^2+4xy-6x+2

= 4x^2+4xy+y^2 +x^2 - 6xy + 9 +y^2

= (2x+y)^2 + (x-3)^2 + (y^2+9) > 0

hok tốt

................

Bình luận (0)
 Khách vãng lai đã xóa
KR
Xem chi tiết
H24
Xem chi tiết
TN
11 tháng 8 2018 lúc 20:32

\(\sqrt{x}< x\)

vì \(\left(\sqrt{x}\right)^2=x\)với \(\forall\)\(x\ge0\)

học tốt

Bình luận (0)
LA
11 tháng 8 2018 lúc 20:34

Vì: \(x\ge0\) nên \(\sqrt{x}\ge0\)

+) \(\sqrt{x}=x\Leftrightarrow x=x^2\Leftrightarrow x-x^2=0\Leftrightarrow x\left(1-x\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

+) \(\sqrt{x}< x\Leftrightarrow x< x^2\Leftrightarrow x-x^2< 0\Leftrightarrow x\left(1-x\right)< 0\Leftrightarrow x>1\)

+) \(\sqrt{x}>x\Leftrightarrow x>x^2\Leftrightarrow x-x^2>0\Leftrightarrow x\left(1-x\right)>0\Leftrightarrow0< x< 1\)

Vậy: Nếu \(x=0\) thì \(x=1\) hoặc \(\sqrt{x}=x\)

        Nếu \(x>1\) thì \(\sqrt{x}< x\)

        Nếu \(0< x< 1\) thì \(\sqrt{x}>x\)

=.= hok tốt!!

Bình luận (0)
HC
Xem chi tiết
AH
11 tháng 2 2024 lúc 0:22

Lời giải;

Vế 1:

Áp dụng BĐT AM-GM:

$2=(x^2+y^2)(1+1)\geq (x+y)^2\Rightarrow x+y\leq \sqrt{2}$

$x^3+\frac{x}{2}\geq \sqrt{2}x^2$

$y^3+\frac{y}{2}\geq \sqrt{2}y^2$

$\Rightarrow x^3+y^3+\frac{x+y}{2}\geq \sqrt{2}(x^2+y^2)=\sqrt{2}$

$\Rightarrow x^3+y^3\geq \sqrt{2}-\frac{x+y}{2}\geq \sqrt{2}-\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}$

-----------------------

Vế 2:

$x^2+y^2=1$

$\Rightarrow x^2=1-y^2\leq 1\Rightarrow -1\leq x\leq 1$

$y^2=1-x^2\leq 1\Rightarrow -1\leq y\leq 1$

$\Rightarrow x^3\leq x^2; y^3\leq y^2$

$\Rightarrow x^3+y^3\leq x^2+y^2$ hay $x^3+y^3\leq 1$

Bình luận (0)