Những câu hỏi liên quan
DT
Xem chi tiết
PL
12 tháng 6 2019 lúc 20:10

\(a,\)\(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}\)

\(đkxđ\Leftrightarrow\sqrt{\left(x-1\right)^2}\ge0\)

\(\Rightarrow x-1\ge0\Rightarrow x\ge1\)

\(b,\)\(\sqrt{x+3}+\sqrt{x+9}\)

\(đkxđ\Leftrightarrow\hept{\begin{cases}x+3\ge0\\x+9\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-3\\x\ge-9\end{cases}}}\)

\(\Rightarrow x\ge-3\)

Bình luận (0)
PL
12 tháng 6 2019 lúc 20:15

\(c,\)\(\sqrt{\frac{x-1}{x+2}}\)

\(đkxđ\Leftrightarrow\hept{\begin{cases}x+2\ne0\\\frac{x-1}{x+2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-2\\\frac{x-1}{x+2}\ge0\end{cases}}}\)

\(\frac{x-1}{x+2}\ge0\)\(\Rightarrow\orbr{\begin{cases}x-1\ge0;x+2>0\\x-1\le0;x+2< 0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x\ge-1;x>-2\\x\le1;x< 2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x\ge-1\\x< 2\end{cases}}\)

Vậy căn thức xác định khi x \(\ge\)-1 hoawck x < 2

Bình luận (0)
PL
12 tháng 6 2019 lúc 20:22

\(d,\)\(\sqrt{x-2}-\frac{1}{x-5}\)

\(đkxđ\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}xđ\\\frac{1}{x-5}xđ\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x-2\ge0\\x-5\ne0\end{cases}\Rightarrow\orbr{\begin{cases}x\ge2\\x\ne5\end{cases}}}\)

Vậy biểu thức xác định \(\Leftrightarrow x\ge2\)và \(x\ne5\)

Bình luận (0)
DT
Xem chi tiết
KN
12 tháng 6 2019 lúc 21:01

a) \(\sqrt{x+3}+\sqrt{x^2+9}\)

Ta thấy \(x^2\ge0\Rightarrow x^2+9\ge9\Rightarrow\sqrt{x^2+9}\ge3\)(luôn xác định)

Vậy để biểu thức xác định thì \(\sqrt{x+3}\)phải xác định

\(\Rightarrow x+3\ge0\Leftrightarrow x\ge-3\)

Vậy \(ĐKXĐ:x\ge-3\)

Bình luận (0)
KN
12 tháng 6 2019 lúc 21:03

b) \(\sqrt{\frac{x-1}{x+2}}\)

Để biểu thức trên xác định thì x - 1 và x + 2 cùng dấu

\(TH1:\hept{\begin{cases}x-1>0\\x+2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>-2\end{cases}}\Rightarrow x>1\)

\(TH1:\hept{\begin{cases}x-1< 0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x< -2\end{cases}}\Rightarrow x< -2\)

Vậy \(ĐKXĐ:x>1;x< -2\)

Bình luận (0)
KN
12 tháng 6 2019 lúc 21:07

c) \(\sqrt{x-1}+\frac{1}{x-5}\)

Để biểu thức xác định thì \(x-5\ne0\Leftrightarrow x\ne5\)

Và \(x-1\ge0\Leftrightarrow x\ge1\)

Vậy \(ĐKXĐ:x\ge1;x\ne5\)

Bình luận (0)
NT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LN
17 tháng 10 2018 lúc 21:13

cmr là cái j

Bình luận (0)
NX
4 tháng 4 2021 lúc 9:59

Lê Thanh Thùy Ngân 

cmr là chứng minh rằng bạn nhé 

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
DT
Xem chi tiết
TA
17 tháng 6 2019 lúc 12:13

a)    \(x^2-2\sqrt{2}x+2\)

\(=\left(x-\sqrt{2}\right)^2\)

Bình luận (0)
TA
17 tháng 6 2019 lúc 12:14

b)    \(x^2+2\sqrt{5}x+5\)

\(=\left(x+5\right)^2\)

Bình luận (0)
H24
Xem chi tiết
LL
Xem chi tiết
H24
15 tháng 5 2018 lúc 17:48

cvfbhm,

Bình luận (0)
PE
23 tháng 3 2021 lúc 14:30

Xin lỗi em ko biết làm , em vẫn chưa lên lớp 9

Bình luận (0)
 Khách vãng lai đã xóa
LL
23 tháng 3 2021 lúc 18:27

1)\(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)

\(=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right)\cdot\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)

\(=\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)

\(=\frac{\sqrt{a}-1}{\sqrt{a}}\)

Bình luận (0)
 Khách vãng lai đã xóa