Những câu hỏi liên quan
NN
Xem chi tiết
HS
10 tháng 4 2018 lúc 20:21

a)A=n/n+1=n/n+0/1

   B=n+2/n+3=n/n  +  2/3

ta có:0<2/3

=>A<B

Bình luận (0)
Xem chi tiết
BS
18 tháng 12 2018 lúc 22:56

Ta cóA= 3n+3+2n+3+3n+1+2n+2=3n.27+2n.8+3n.3+2n.4=3n.(27+3)+2n.(8+4)=3n.30+2n.12

Vì 30 chia hết cho 6 ,12 chia hết cho 6 suy ra 3n.30 chia hết cho 6,2n.12 chia hết cho 6 

suy ra 3n.30+2n.12 chia hết cho 6

suy ra A chia hết cho 6

Bình luận (0)
NP
Xem chi tiết
Xem chi tiết
LT
18 tháng 12 2018 lúc 22:22

thích bé chanh à

Bình luận (0)
TD
Xem chi tiết
H24
8 tháng 3 2018 lúc 20:34

A đâu !!

Bình luận (0)
VL
10 tháng 3 2018 lúc 21:02

anh cũng đang định hỏi câu này

Bình luận (0)
TG
22 tháng 3 2018 lúc 22:38

Ta có \(A=\frac{1}{2!}+\frac{2}{3!}+...+\frac{2014}{2015!}\)

=>  \(A=\frac{2-1}{2!}+\frac{3-1}{3!}+...+\frac{2015-1}{2015!}\)

=>  \(A=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+...+\frac{2015}{2015!}-\frac{1}{2015!}\)

=> \(A=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+...+\frac{1}{2014!}-\frac{1}{2015!}\)

=>  \(A=1-\frac{1}{2015!}< 1\)

Bình luận (0)
H24
Xem chi tiết
X1
24 tháng 1 2019 lúc 20:24

Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

Đặt : \(n^2+3n=k\)\(\Rightarrow A=k\left(k+2\right)=k^2+2k\)

Ta có : \(\left(k+1\right)^2=\left(k+1\right)\left(k+1\right)\)

\(=k\left(k+1\right)+1\left(k+1\right)\)

\(=k^2+k+k+1=k^2+2k+1\)

Do : \(n\inℕ^∗\Rightarrow n^2+3n>0\)hay : \(k>0\)

\(\Rightarrow k^2+2k>k^2\)

Ta có : \(k^2< k^2+2k< k^2+2k+1\)

hay : \(k^2< k^2+2k< \left(k+1\right)^2\)

Do : \(k^2\)và \(\left(k+1\right)^2\)là hai số chính phương liên tiếp

\(\Rightarrow k^2+2k\)không phải là số chính phương

Bình luận (0)
H24
24 tháng 1 2019 lúc 20:28

\(Giai\)

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

\(\text{Đặt:n2+3n=t}\)

\(A=t\left(t+2\right)=\left(t+1\right)^2-1\)

Đến đây cậu đã làm được chưa ạ?

Bình luận (0)
DN
24 tháng 1 2019 lúc 20:38

Mình nghĩ là lm thế này :

A+1=n.(n+1).(n+2).(n+3)+1=n.(n+3).(n+1).(n+2)+1=(n^2+3n).(n^2+3n+2)+1   (1)

Đặt n^2+3n=t (t thuộc N) thì (1) =t.(t+2)+1=t^2+2t+1=(t+1)^2=(n^2+3n+1)^2

Vì n thuộc N nên => n^2+3n+1 thuộc N

Vậy A+1 là số chính phương.

Do đó A không phải số chính phương

Bình luận (0)
BA
Xem chi tiết
AK
1 tháng 5 2018 lúc 21:12

\(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n.\left(n+a\right)}-\frac{n}{n.\left(n+a\right)}=\frac{a}{n.\left(n+a\right)}\) 

\(\left(đpcm\right)\)

Chúc bạn học tốt !!!! 

Bình luận (0)
KK
Xem chi tiết
PD
19 tháng 11 2018 lúc 20:54

Gọi UCLN (A;B) là : d

=> \(A⋮d\)

\(\Rightarrow\frac{n^2}{2}+\frac{n}{2}⋮d\)

\(\Rightarrow\frac{4}{n}\left(\frac{n^2}{2}+\frac{n}{2}\right)⋮d\)

\(\Rightarrow2n+2⋮d\)

\(\Rightarrow2n+2-2n-1⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

vậy...............

Bình luận (0)
H24
Xem chi tiết
HD
14 tháng 3 2019 lúc 17:54

a, \(a\in\left\{0,1\right\}\)

b, \(m>n\)

Bình luận (0)