#)Giải :
Đặt \(K=1+a+a^2+...+a^n\Rightarrow aK=1.a+a.a+a^2.a+...+a^n.a\)
\(=a+a^2+a^3+...+a^{n+1}\)
\(\Rightarrow aK-K=\left(a+a^2+a^3+...+a^{n+1}\right)-\left(1+a+a^2+...+a^n\right)=a^{n+1}-a\)
\(\Rightarrow K=\frac{a^{n+1}-a}{a}\)
#)Giải :
Đặt \(K=1+a+a^2+...+a^n\Rightarrow aK=1.a+a.a+a^2.a+...+a^n.a\)
\(=a+a^2+a^3+...+a^{n+1}\)
\(\Rightarrow aK-K=\left(a+a^2+a^3+...+a^{n+1}\right)-\left(1+a+a^2+...+a^n\right)=a^{n+1}-a\)
\(\Rightarrow K=\frac{a^{n+1}-a}{a}\)
CTR tích \(13^n.\left(13^n+3\right).\left(13^n+4\right).\left(13^n+1\right)⋮4\)với \(n\inℕ\)
Tìm \(x\in N\)biết:
a) \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+30\right)=1240\)
b) \(1+2+3+...+x=210\)
CHo a,b,c > 0 thỏa mãn: abc=1 .CMR:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(a+c\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\) (1)
A=\(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{2007}\right)\)
A=?
Tính:
A = \(\dfrac{1x2010+2x2009+3x2008+...+2010x1}{\left(1+2+3+...+2010\right)+\left(1+2+3+...+2009\right)+...+\left(1+2\right)+1}\)
Cho a,b,c>0 thỏa mãn a+b+c = 3. CMR:
\(25\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+351\ge88\left(a^2+b^2+c^2\right)\)
\(A=\dfrac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)}{1\text{×}2020+2\text{×}2019+3\text{×}2018+...+2020\text{×}1}\)
Cho a,b,c thực dương .CMR
\(\sqrt{\frac{\left(a+b\right)^3}{ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(b+c\right)^3}{bc\left(4b+4c+a\right)}}+\sqrt{\frac{\left(c+a\right)^3}{ca\left(4c+4c+b\right)}}\ge2\sqrt{2}\)
Cho các số thực dương a, b, c. Chứng minh rằng: \(\frac{a^3}{c\left(a^2+bc\right)}+\frac{b^3}{a\left(b^2+ca\right)}+\frac{c^3}{b\left(c^2+ab\right)}\ge\frac{a+b+c}{2\sqrt[3]{abc}}\)