Những câu hỏi liên quan
DT
Xem chi tiết
PH
Xem chi tiết
NL
Xem chi tiết
DL
Xem chi tiết
KL
9 tháng 10 2023 lúc 16:16

11111111 - 2222

= 11108889

= 3333 . 3333

Bình luận (0)
LT
9 tháng 10 2023 lúc 16:32

bạn có thể tham khảo

Bình luận (0)
LT
9 tháng 10 2023 lúc 16:55

x = 11 111 111 - 2 222

Đặt 2 222 = 2 x 1 111.

Khi đó:

x = 11 111 111 - 2 x 1 111

Chúng ta có thể thấy rằng cả số 11 111 111 và 1 111 đều chia hết cho 1111.

11 111 111 = 1111 x 10 001 1 111 = 1111 x 1

Vì như vậy:

x = 1111 x 10 001 - 2 x 1111 x 1

x = 1111(10 001 - 2)

x = 1111 x 9999

Ta có:

11 111 111 = 1111 x 9999 2 222 = 1111 x 2

Do đó, chúng tôi đã chứng minh rằng hai số trên có thể viết thành một tích của hai số bằng nhau.

Bình luận (0)
LD
Xem chi tiết
TA
7 tháng 5 2021 lúc 21:51

Ta sẽ CM tổng của 2 số chính phương chia 4 không thể có số dư là 3.

Thật vậy mọi số chính phương chẵn luôn chia hết cho 4.

mọi số chính phương lẻ luôn chia 4 dư 1 (vì (2x+1)2=4x(x+1)+1 chia 4 dư 1)

Do đó tổng của hai số chính phương chỉ có thể có số dư 0,1 hoặc 2 khi chia cho 4

Mà các số trên đều được viết dưới dạng 11...1=10...0+11.

Mà 10...0 chia hết cho 4 và 11 chia 4 dư 3 nên dãy số này không có số nào biểu diễn được dưới dạng tổng của 2 số chính phương (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
LM
Xem chi tiết
EL
Xem chi tiết
H24
6 tháng 8 2018 lúc 21:34

A = 111...1000...0 + 111...1 - 222...2

     (n cs 1)(n cs 0)   (n cs 1)  (n cs 2)

\(A=111...1\cdot10^n+111...1-222...2\)

        (n cs 1)                       ( n cs 1 )      ( n cs 2 )

Đặt   K = 111...1  ( n cs 1 )   => 9K + 1 = 10^n

=> A = K( 9k + 1 ) + K - 2K

        = 9K^2 + K + K - 2K

        = 9K^2   = (3K)^2     

=> A là một số chính phương

B = 111...1000...0 + 111...1 +  444...4 + 1

    (n cs 1)(n cs 0)   (n cs 1)    (n cs 4)

\(\Rightarrow B=111...1\cdot10^n+111...1+444...4+1\)

                ( n cs 1 )                 ( n cs 1 )         ( n cs 4 )

Đặt   K = 111...1   ( n cs 1 )         => 9K + 1 = 10^n

=> B = K( 9K + 1 ) + K + 4K + 1

         = 9K^2 + 6K + 1

         = ( 3K + 1 ) ^2

=> B là một số chính phương

Bình luận (0)
MT
Xem chi tiết
LH
23 tháng 8 2021 lúc 14:55

\(ab+1=\underbrace{11....11}_{2018c/s1}.\underbrace{11....13}_{2017c/s1}+1\)

\(\Leftrightarrow ab+1=(\underbrace{11....10}_{2017c/s1}+1).(\underbrace{11....10}_{2017c/s1}+3)+1\)

\(\Leftrightarrow ab+1=\underbrace{11....10^2}_{2017c/s1}+4.\underbrace{11....10}_{2017c/s1}+3+1\)

\(\Leftrightarrow ab+1=\underbrace{11....10^2}_{2017c/s1}+4.\underbrace{11....10}_{2017c/s1}+4\)

\(\Leftrightarrow ab+1=(\underbrace{11....10}_{2017c/s1}+2)^2\) là số chính phương

Vậy...

C áp dụng hằng đẳng thức : \(x^2+2xy+y^2=\left(x+y\right)^2\)

Bình luận (0)
BH
Xem chi tiết
AH
29 tháng 6 2021 lúc 17:30

Bài 1:
Đặt \(\underbrace{111....1}_{1009}=t\Rightarrow 9t+1=10^{1009}\)

Ta có:

\(a+b+1=\underbrace{11...11}_{1009}.10^{1009}+\underbrace{11...1}_{1009}+4.\underbrace{11....1}_{1009}+1\)

\(=t(9t+1)+t+4.t+1=9t^2+6t+1=(3t+1)^2\) là scp.

Ta có đpcm.

 

Bình luận (0)
AH
29 tháng 6 2021 lúc 17:34

Bài 2:
Đặt \(\underbrace{111....1}_{n}=t\Rightarrow 9t+1=10^n\)

Ta có:

\(a+b+c+8=\underbrace{111..11}_{n}.10^n+\underbrace{111....1}_{n}+\underbrace{11...1}_{n}.10+1+6.\underbrace{111...1}_{n}+8\)

\(t(9t+1)+t+10t+1+6t+8=9t^2+18t+9\)

\(=(3t+3)^2\) là scp.

Ta có đpcm.

Bình luận (0)