Cho n nguyên dương, CMR : 16^n -15n -1 chia hết cho 225
Help >.<
Sử Dụng phương pháp qui nạp để giải:
1)CMR:9^2n+14 chia hết cho 5.
2)CMR:16^n-15n-1 chia hết cho 225.
3)CMR:4^n+15n-1 chia hết cho 9.
4)CMR:1+2+...+n=n(n+1)/2
5)CMR:11^n+1+12^2n-1 chia hêts cho 133
Ai xong nhanh nhất , chi tiết nhất tự biết rồi đấy!
Mình sẽ tích cho
CMR : ( 16n - 15n - 1) chia hết 225
Điều phải CM đúng với n = 1 , khi đó , ta có :
161 - 15.1 - 1 = 0 ⋮225
Gỉa sử điều phải CM đúng với : n = k , ta có :
16k - 15.k - 1 ⋮225
Ta CMR điều phải CM cũng đúng với n = k + 1 , Ta có :
16k+1 - 15( k + 1) - 1
= 16.16k - 15k - 15 - 1 = ( 16k - 15k - 1) + 15.16k - 15
( Vì 16.16k = ( 15 + 1)16k = 16k + 15.16k )
Theo giả thiết trên thì : 16k - 15k - 1 ⋮ 225
Còn : 15.16k - 15 = 15( 16k - 1)
Mà : 16k - 1 ⋮( 16 - 1)
⇒15( 16k - 1) ⋮ 15.15 = 225
⇒ đpcm
Giải:
Với n=1 thì 16n – 15n – 1 = 16 – 15 – 1 = 0 ⋮ 225
Giả sử 16k – 15k – 1 ⋮ 225
Ta chứng minh 16k+1 – 15(k+1) – 1 ⋮ 225
Thực vậy: 16k+1 – 15(k+1) – 1 = 16.16k – 15k – 15 – 1
= (16k – 15k – 1) + 15.16k – 15
Theo giả thiết qui nạp 16k – 15k – 1 ⋮ 225
Còn 15.16k – 15 = 15(16k – 1) ⋮ 15.15 = 225
Vậy 16n – 15n – 1 ⋮ 225.
Mình sẽ sử dụng hằng đẳng thức sau để chứng minh:
xn-yn= (x-y)(xn-1 +
xn-2y+....+ yn-1) với mọi n € N
Ta có: 16n -15n-1
= (16n-1) -15n
= (16-1)(16n-1+ ...+1)-15n
= 15(16n-1+...+1-n)
Vì 15 chia hết cho 15
Và biểu thức trong ngoặc chia hết cho 15 nên 16n-15n-1 chia hết cho 225 (đpcm)
cmr
16^n-15n-1 chia hết cho 225
Đặ Un=16^n-15n-1=225
Gỉa sử ta có Un chia hết cho 225 với n bằng một giá trị k bất kì (k>=1) tức là Uk=16^k-15k-1 chia hết cho 225
Do đó ta cần chứng minh tiếp U[k+1]=16^k+1-15k-1 chia hết cho 225 là ok
Nên ta có tiếp 16^(k+1)-15(k+1)-1=16^16k-15k-15-1=16^k-15k-1+15*16^k-15=Uk+15+(16^k-1)*(1) do đó nên ta đã có Uk chia hết cho 225.Rồi ta chỉ cần chứng minh cho 16^k-1 chia hết cho 15 là được
cmr
a) 16n - 15n - 1 chia hết cho 225
b) 33n+3 - 26n- 27 chia hết cho 169
c) 106n-4 + 106n-5 +1 chia hết cho 111
CMR: A= 16^n -15n -1 chia hết 225. Giải nhanh giùm cái. Cảm ơn
Chứng minh rằng 16n - 15n - 1 chia hết cho 225 ( với n thuộc N* )
chứng minh rằng 16n-15n-1 chia hết cho 225
Đặt Un = 16^n-15n-1
- Xét n = 1 , ta có : U1 = 16^1 - 15*1 - 1 =0 chia hết cho 225
- Giả sử Un chia hết cho 225 với n = k nào đó ( k >=1), tức là : Uk = 16^k -15k -1 chia hết cho 225
Giờ ta chỉ cần chứng minh U[k + 1] = 16^(k + 1 ) -15(k + 1) -1 chia hết cho 225 là được
**Thật vậy ta có 16^(k + 1 ) -15(k + 1) -1 = 16*16^k - 15k - 15 - 1 = 16^k -15k -1 + 15*16^k -15=Uk + 15(16^k -1) (1) Ở đây, đã có Uk chia hết cho 225 rồi, ta thấy chỉ cần chứng minh 16^k -1 chia hết cho 15 nữa là được
_________________-
Với việc chứng minh Vk = 16^k - 1 chia hết cho 15
- Xét k = 1 , ta có V1 = 15 chia hết cho 15
- Giả sử Vk chia hết cho 15 với k = h nào đó (h>= 1), tức là Vh = 16^h -1 chia hết cho 15
Giờ ta chỉ cần chứng minh V[h + 1] = 16^(h + 1) - 1 chia hết cho 15 là được
*** Thật vậy tacó 16^(h+1) - 1 = (16^h)*16 - 1 = 16^h - 1 + 15*16^h = Vh + 15*16^h chia hết cho 15 (2)
______________
Vậy từ (1) và (2) ta có được điều phãi chứng minh
16 đồng dư với 1(mod 15)
=>16n đồng dư với 1(mod 15)
=>16n-1 đồng dư với 0(mod 15)
=>16n-1 chia hết cho 15
mà 15n chia hết cho 15
=>16n-15n-1 chia hết cho 15(đpcm)
Với n=1 thì 16n – 15n – 1 = 16 – 15 – 1 = 0 ⋮ 225
Giả sử 16k – 15k – 1 ⋮ 225
Ta chứng minh 16k+1 – 15(k+1) – 1 ⋮ 225
Thực vậy: 16k+1 – 15(k+1) – 1 = 16.16k – 15k – 15 – 1
= (16k – 15k – 1) + 15.16k – 15
Theo giả thiết qui nạp 16k – 15k – 1 ⋮ 225
Còn 15.16k – 15 = 15(16k – 1) ⋮ 15.15 = 225
Kết luận: Vậy 16n – 15n – 1 ⋮ 225.
Chứng minh với n là số tự nhiên thì
a) \(2^{4n}-1\)chia hết cho 15
b) \(16^n-15n-1\)chia hết cho 225
a) Với \(n\in N\Rightarrow2^{4n}-1=16^n-1=\left(16-1\right).\left(16^{n-1}+16^{n-2}+...+1\right)\)
\(=15.\left(16^{n-1}+16^{n-2}+...+1\right)⋮15\)
b) Với \(n\in N\Rightarrow16^n-15n-1=\left(16^n-1\right)-15n\)
mà \(\left(16^n-1\right)⋮15\left(cma\right);15n⋮15\)
\(\Rightarrow16^n-15n-1⋮15\)
Chứng minh 16n - 15n -1 chia hết cho 225
Các bn giúp mk nhé mai mk fai np zồi
16^n - 15n - 1 =16^n-15n-1
= 15 .[ (16^(n-1)+16^(n-2)+...+1] - 15n
=15 . [ 16^(n-1)+16^(n-2)+...+1-n]
=15 .{ [ 16^(n -1)]+[16^(n-2) -1]+...+(16-1)}
Ta có : 16^(n-1) -1\(⋮\)15
16^(n-2) -1\(⋮\)15
.....
16 -1 \(⋮\)15
=>[16^(n-1) -1]+[16^(n-2) -1]+...+(16-1) =15k (k\(\in\)N)
=>16^n-15n-1 = 15 . 15k = 225 k\(⋮\)225
(đpcm)