KK

Cho n nguyên dương, CMR : 16^n -15n -1 chia hết cho 225 

Help >.<

H24
17 tháng 7 2019 lúc 19:59

Em thử quy nạp nhé!

Với n = 1 thì mệnh đề đúng

Giả sử đúng với n = k thuộc N* tức là \(16^k-15k-1⋮225\) (giả thiết quy nạp)

Cần chứng minh nó đúng với n = k + 1. Tức là chứng minh \(16^{k+1}-15\left(k+1\right)-1⋮225\)

\(\Leftrightarrow16^k.16-15k-16⋮225\)

\(\Leftrightarrow16\left(16^k-15k-1\right)+15.15k⋮225\) (luôn đúng theo giả thiết quy nạp)

Ta có đpcm

Bình luận (0)
KN
16 tháng 8 2020 lúc 21:06

n nguyên dương nên \(n\ge1\)

+) Xét n = 1 thì \(16^n-15n-1=0⋮225\)

Như vậy thì khẳng định đúng với n = 1

+) Giả sử khẳng định đúng với n = t tức là \(16^t-15t-1⋮225\)

Ta chứng minh khẳng định đúng với n = t + 1

Thật vậy: \(16^{t+1}-15\left(t+1\right)-1=16^t\left(15+1\right)-15t-15-1\)

\(=\left(16^t-15t-1\right)+15\left(16^t-1\right)\)

Ta có: \(16^t-1⋮16-1=15\)suy ra \(15\left(16^t-1\right)⋮225\)

Mà \(\left(16^t-15t-1\right)⋮225\)(Theo giả sử) nên \(16^{t+1}-15\left(t+1\right)-1⋮225\)

Vậy \(16^n-15n-1⋮225\forall n\inℕ^∗\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NA
Xem chi tiết
H24
Xem chi tiết
QN
Xem chi tiết
NL
Xem chi tiết
MN
Xem chi tiết
NA
Xem chi tiết
HB
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết