Những câu hỏi liên quan
PT
Xem chi tiết
OO
Xem chi tiết
MT
1 tháng 1 2016 lúc 8:03

\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=0,25\)

Suy ra: x2/4=0,25 =>x2=1=>x=-1 hoặc x=1

y2/16=0,25=>y2=4 =>y=2 hoặc y=-2

z2/36=0,25 =>z2=9 => z=3 hoặc z=-3

Chúc Mừng Năm Mới!

Bình luận (0)
IW
1 tháng 1 2016 lúc 7:58

Công Chúa Giá Băng đã tái xuất giang hồ

Bình luận (0)
OO
1 tháng 1 2016 lúc 7:58

cách này có đúng không nhỉ ?
           a3\8 = b3\64 = c3\216
suy ra a3\23 = b3\43 = c3\63
          ( a\2)3 = (b\4)3 = (c\6)3
           a\2 = b\4 = c\6
suy ra a=2k , b=4k , c=6k
ta có    a2+b2+c2=14
          (2k)2+(4k)2+(6k)2=14
          4k2 + 16k2 + 36k2=14
         k2(4+16+36) = 14
         k2*56=14
         k2 = 14/56=1/4
        k= 1/2 hoặc -1/2
với k=1/2 thì  a=1/2*2=1 , b= 1/2*4 = 2 , c=1/2*6 = 3
với k=-1/2 thì a= -1/2 *2=-1 , b=-1/2*4=-2 , c= -1/2 * 6 = -3

Bình luận (0)
LL
Xem chi tiết
B9
14 tháng 7 2016 lúc 14:26

Thèo đề bài, ta có:

\(\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

x ; y ; z thì bạn tự tìm nhé , chắc cái này không khó đâu nhỉ ??

Bình luận (0)
SK
14 tháng 7 2016 lúc 14:32

\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\) \(=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

\(\frac{x}{2}=\frac{1}{4}\Rightarrow x=\frac{1}{2}\)

\(\frac{y}{4}=\frac{1}{4}\Rightarrow y=1\)

\(\frac{z}{6}=\frac{1}{4}\Rightarrow z=\frac{3}{2}\)

Bình luận (0)
NT
Xem chi tiết
DV
19 tháng 10 2015 lúc 22:18

\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Leftrightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Leftrightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{3}\)

Đến đây tự làm được rồi nhé !    

Bình luận (0)
TD
19 tháng 10 2015 lúc 22:27

=>\(\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\)=>\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)=>\(\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\)

Ap dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}=\frac{x^2+y^2+z^2}{2^2+4^2+6^2}=\frac{14}{56}=\frac{1}{4}\)(Vì x2+y2+z2=14)

=>\(\frac{x^2}{2^2}=\frac{1}{4}=>x^2=1=>x^2=1;x=-1\)

=>\(\frac{y^2}{4^2}=\frac{1}{4}=>y^2=4=>y=2;y=-2\)

=>\(\frac{z^2}{6^2}=\frac{1}{4}=>z^2=9=.z=3;z=-3\)

Vậy x=1 ; y=2 ; z=3  hoặc x=-1 ; y=-2 ; z=-3

 

Bình luận (0)
TT
Xem chi tiết
CT
15 tháng 7 2019 lúc 21:06

a) vì x/2=y/3=> x/8=y/12

         y/4=z/5=>y/12=z/15

từ hai cái trên nên x/8=y/12=z/15=> x^2/64=y^2/144=z^2/225 và x^2-y^2=-80

Áp dụng t/c dãy tỉ số bằng nhau ta được

x^2/64=y^2/144=z^2/225=x^2-y^2/64-144=-80/-80=1

+) x=8

+)y=12

+)z=15

cái dưới chỉ cần nhân hệ số vào và làm tương tự nhé e.

Bình luận (0)
HS
16 tháng 7 2019 lúc 16:22

\(a,\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\) và \(x^2-y^2=-80\)

Ta có : \(\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{20}\)

\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{20}\Rightarrow\frac{x^2}{64}=\frac{y^2}{144}=\frac{z}{20}\)

Mà \(x^2-y^2=-80\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{z}{20}=\frac{x^2-y^2}{64-144}=\frac{-80}{-80}=1\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x^2}{64}=1\\\frac{y^2}{144}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=64\\y^2=144\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm8\\y=\pm12\end{cases}}\)

Bình luận (0)
HS
16 tháng 7 2019 lúc 16:28

\(b,\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)

\(\Leftrightarrow\left[\frac{x}{2}\right]^3=\left[\frac{y}{4}\right]^3=\left[\frac{z}{6}\right]^3\)

\(\Leftrightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)

\(\Leftrightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{2x^2}{8}=\frac{2y^2}{32}=\frac{z^2}{36}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{2x^2}{8}=\frac{2y^2}{32}=\frac{z^2}{36}=\frac{2x^2+2y^2-z^2}{8+32-36}=\frac{1}{4}\)

Vậy : \(\hept{\begin{cases}\frac{x^2}{4}=\frac{1}{4}\\\frac{y^2}{16}=\frac{1}{4}\\\frac{z^2}{36}=\frac{1}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=1\\y^2=4\\z^2=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=\pm2\\z=\pm3\end{cases}}\)

Bình luận (0)
NN
Xem chi tiết
ST
24 tháng 7 2018 lúc 11:43

\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

\(\Rightarrow\hept{\begin{cases}\frac{x^2}{4}=\frac{1}{4}\\\frac{y^2}{16}=\frac{1}{4}\\\frac{z^2}{36}=\frac{1}{4}\end{cases}\Rightarrow\hept{\begin{cases}x^2=1\\y^2=4\\z^2=9\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm1\\y=\pm2\\z=\pm3\end{cases}}}\)

Bình luận (0)
NT
Xem chi tiết
TD
12 tháng 10 2015 lúc 21:29

\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)=>\(\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\)=>\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)

=>\(\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\)=>\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)

Aps dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)(vì x2+y2+z2=14)

=>\(\frac{x^2}{4}=\frac{1}{4}=>x^2=1=>x=1;x=-1\)

=>\(\frac{y^2}{16}=\frac{1}{4}=>y^2=4=>y=2;y=-2\)

=>\(\frac{z^2}{36}=\frac{1}{4}=>z^2=9=>z=3;z=-3\)

Vậy x=1; y=2 ; z=3

Hoặc x=-1 ;y=-2 ;z=-3

Bình luận (0)
BT
Xem chi tiết
DV
14 tháng 7 2016 lúc 22:01

\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\left(\frac{x}{2}\right)^3=\left(\frac{x}{4}\right)^3=\left(\frac{x}{6}\right)^3\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)

\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

\(\Rightarrow x^2=1;y^2=4;z^2=9\) 

\(\Rightarrow x=1;y=2;z=3\) hoặc \(x=-1;y=-2;z=-3\)

 

Bình luận (1)
NH
Xem chi tiết