Tìm n ∈ N để số sau là số nguyên tố : a = n4 - 3n2 + 1 .
7. Chứng minh rằng với mọi số tự nhiên lẻ n:
n2+ 4n + 8 chia hết cho 8
n3+ 3n2- n - 3 chia hết cho 48
8. Tìm tất cả các số tự nhiên n để :
n4+ 4 là số nguyên tố
n1994+ n1993+ 1 là số nguyên tố
Tìm số nguyên dương n sao cho n4+4n3-3n2-n+3 là số chính phương .
1.Tìm 3 số nguyên tố a; b; c sao cho
a2+5ab+b2=7
2.Tìm n∈N để
A=n2012+n2002+1 là số nguyên tố
3.Tìm n∈N* để n4+n3+1 là 1 SCP
\(2,\\ n=0\Leftrightarrow A=1\left(loại\right)\\ n=1\Leftrightarrow A=3\left(nhận\right)\\ n>1\Leftrightarrow A=n^{2012}-n^2+n^{2002}-n+n^2+n+1\\ \Leftrightarrow A=n^2\left[\left(n^3\right)^{670}-1\right]+n\left[\left(n^3\right)^{667}-1\right]+\left(n^2+n+1\right)\)
Ta có \(\left(n^3\right)^{670}-1⋮\left(n^3-1\right)=\left(n-1\right)\left(n^2+n+1\right)⋮\left(n^2+n+1\right)\)
Tương tự \(\left(n^3\right)^{667}⋮\left(n^2+n+1\right)\)
\(\Leftrightarrow A⋮\left(n^2+n+1\right);A>1\)
Vậy A là hợp số với \(n>1\)
Vậy \(n=1\)
\(3,\)
Đặt \(A=n^4+n^3+1\)
\(n=1\Leftrightarrow A=3\left(loại\right)\\ n\ge2\Leftrightarrow\left(2n^2+n-1\right)^2\le4A\le\left(2n^2+n\right)^2\\ \Leftrightarrow4A=\left(2n^2+n\right)^2\\ \Leftrightarrow4n^2+4n^3+4=4n^2+4n^3+n^2\\ \Leftrightarrow n^2=4\Leftrightarrow n=2\)
Vậy \(n=2\)
Tìm n ∈ N * để
1.n4 + 4 là số nguyên tố.
2.n2003 + n2002 + 1 la số nguyên tố
1.Ta có
n4 + 4 = n4 + 4n2 + 4 – 4n2
= (n2 + 2 )2 – (2n)2
= (n2 + 2 – 2n )(n2 + 2 + 2n)
Vì n4 + 4 là số nguyên tố nên n2 + 2 – 2n = 1 hoặc n2 + 2 + 2n = 1
Mà n2 + 2 + 2n > 1 vậy n2 + 2 – 2n = 1 suy ra n = 1
Thử lại : n = 1 thì 14 + 4 = 5 là số nguyên tố
Vậy với n = 1 thì n4 + 4 là số nguyên tố./
2.Ta có :
n2003 + n2002 + 1 = n2(n2001 – 1) + n(n2001 – 1) + n2 + n + 1
Với n > 1 ta có :
Do đó
Mà n2 + n + 1 > 1 nên n2003 + n2002 + 1 là hợp số
Với n = 1 ta có
n2003 + n2002 + 1 = 12003 + 12002 + 1 = 3 là số nguyên tố .
Tìm tất cả các số tự nhiên n để:
1. n4 + 4 là số nguyên tố
2. n1994 + n1993 + 1 là số nguyên tố
1) n4 + 4 = (n4 + 4n2 + 4) - 4n2 = (n2 + 2)2 - (2n)2 = (n2 + 2 + 2n).(n2 + 2 - 2n)
Ta có n2 + 2n + 2 = (n+1)2 + 1 > 1 với n là số tự nhiên
n2 - 2n + 2 = (n -1)2 + 1 1 với n là số tự nhiên
Để n4 + 4 là số nguyên tố => thì n4 + 4 chỉ có 2 ước là chính nó và 1
=> n2 + 2n + 2 = n4 + 4 và n2 - 2n + 2 = (n -1)2 + 1 = 1
(n -1)2 + 1 = 1 => n - 1= 0 => n = 1
Vậy n = 1 thì n4 là số nguyên tố
Cho p=n4-27n2+121 .Tìm n thuộc N*để p là số nguyên tố
copy cái bài trên mạng ak :) có đáp án rồi mờ :) đăng lên làm j ? :))
Các số sau đây là số nguyên tố hay hợp số với mọi số tự nhiên n
a, n(n+1)
b, 3 n 5
c, n 4 + 4
Với n = 1 thì n(n+1) = 2 là số nguyên tố, với n ≥2 thì n(n+1) là hợp số.
Với n = 1 thì 3 n 5 = 3 là số nguyên tố, với n ≥2 thì 3 n 5 là hợp số.
Với n = 1 thì n 4 + 4 = 5 là số nguyên tố, với n ≥2 thì n 4 + 4 là hợp số
tìm tất cả số nguyên dương n thỏa mãn n5+n4+1 là số nguyên tố
tìm tất cả số nguyên dương n thỏa mãn n5+n4+1 là số nguyên tố
Ta có: \(n^5+n^4+1\)
\(=n^5-n^3+n^2+n^4-n^2+n+n^3-n+1\)
\(=n^2\left(n^3-n+1\right)+n\left(n^3-n+1\right)+\left(n^3-n+1\right)\)
\(=\left(n^3-n+1\right)\left(n^2+n+1\right)\)
Do \(n^5+n^4+1\) là số nguyên tố nên: \(\left[{}\begin{matrix}n^3-n+1=1\\n^2+n+1=1\end{matrix}\right.\) trong hai số phải có 1 số là 1 và số còn lại là số nguyên tố:
TH1: \(n^3-n+1=1\)
\(\Leftrightarrow n^3-n=0\)
\(\Leftrightarrow n\left(n^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}n=0\\n=1\\n=-1\end{matrix}\right.\)
Với
\(n=0\Rightarrow0^5+0^4+1=1\) (loại)
\(n=1\Rightarrow1^5+1^4+1=3\) (nhận)
\(n=-1\Rightarrow\left(-1\right)^5+\left(-1\right)^4+1=1\) (loại)
TH1: \(n^2+n+1=1\)
\(\Leftrightarrow n^2+n=0\)
\(\Leftrightarrow\left[{}\begin{matrix}n=0\\n=-1\end{matrix}\right.\left(\text{loại}\right)\)
Vậy \(n=1\) là số thỏa mãn để \(n^5+n^4+1\) là số nguyên tố
Các số sau đây là số nguyên tố hay hợp số với mọi số tự nhiên n
a) n n + 1
b) 3 n 5
c) n 4 + 4