Rút gọn: A= \(\sqrt{13+\sqrt{2}+5\sqrt{1+2\sqrt{2}}}+\sqrt{13+\sqrt{2}-5\sqrt{1+2\sqrt{2}}}\)
Rút Gọn:
\(A=\sqrt{13+\sqrt{2}+5\sqrt{1+2\sqrt{2}}}+\sqrt{13+\sqrt{2}-5\sqrt{1+2\sqrt{2}}}\)
\(\sqrt{2}A=\sqrt{2}\sqrt{13+\sqrt{2}+5\sqrt{1+2\sqrt{2}}}+\sqrt{2}\sqrt{13+\sqrt{2}-5\sqrt{1+2\sqrt{2}}}\)
\(=\sqrt{26+2\sqrt{2}+5.2\sqrt{1+2\sqrt{2}}}+\sqrt{26+2\sqrt{2}-5.2\sqrt{1+2\sqrt{2}}}\)
\(=\sqrt{5^2+2.5.\sqrt{1+2\sqrt{2}}+\left(1+2\sqrt{2}\right)}+\sqrt{5^2-2.5.\sqrt{1+2\sqrt{2}}+\left(1+2\sqrt{2}\right)}\)
\(=\sqrt{\left(\sqrt{1+2\sqrt{2}}+5\right)^2}+\sqrt{\left(\sqrt{1+2\sqrt{2}}-5\right)^2}\)
\(=\left|\sqrt{1+2\sqrt{2}}+5\right|+\left|\sqrt{1+2\sqrt{2}}-5\right|\)
\(=\sqrt{1+2\sqrt{2}}+5+5-\sqrt{1+2\sqrt{2}}=10\)
=> \(A=\frac{10}{\sqrt{2}}=5\sqrt{2}\)
\(\sqrt{13+\sqrt{2}+5\sqrt{1+2\sqrt{2}}}+\sqrt{13+\sqrt{2}+5\sqrt{1+2\sqrt{2}}}\)
(rút gọn bt)
Câu hỏi của Nguyễn Tấn Phát - Toán lớp 9 - Học toán với OnlineMath
Rút gọn các biểu thức sau:
a \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
b \(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
c \(\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\)
d \(\dfrac{10}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}\left(\dfrac{1+\sqrt{2}}{\sqrt{4-2\sqrt{3}}}:\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\right)\)
a)\(A=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
\(=\sqrt[3]{1+3\sqrt{2}+3\sqrt{2^2}+2\sqrt{2}}-\sqrt[3]{2\sqrt{2}-3\sqrt{2^2}+3\sqrt{2}-1}\)
\(=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\sqrt[.3]{\left(\sqrt{2}-1\right)^3}\)
\(=1+\sqrt{2}-\left(\sqrt{2}-1\right)=2\)
b)\(B=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
\(\Leftrightarrow B^3=5+2\sqrt{13}+3\sqrt[3]{\left(5+2\sqrt{13}\right)\left(5-2\sqrt{13}\right)}\left(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5+2\sqrt{13}}\right)+5-2\sqrt{13}\)
\(\Leftrightarrow B^3=10+3.\sqrt[3]{-27}.B\)
\(\Leftrightarrow B^3+9B-10=0\)
\(\Leftrightarrow\left(B-1\right)\left(B^2+B+10\right)=0\)
\(\Leftrightarrow B=1\) (vì \(B^2+B+10>0\))
c)\(C=\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\)
\(\Leftrightarrow2C=\sqrt[3]{8\sqrt{5}+16}-\sqrt[3]{8\sqrt{5}-16}=\sqrt[3]{1+3\sqrt{5}+3\sqrt{5^2}+5\sqrt{5}}-\sqrt[3]{5\sqrt{5}-3\sqrt{5^2}+3\sqrt{5}-1}\)
\(=\sqrt[3]{\left(1+\sqrt{5}\right)^3}-\sqrt[3]{\left(\sqrt{5}-1\right)^3}\)
\(=1+\sqrt{5}-\left(\sqrt{5}-1\right)\)
\(\Rightarrow C=1\)
d) \(D=\dfrac{10}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}\left(\dfrac{1+\sqrt{2}}{\sqrt{4-2\sqrt{3}}}:\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\right)\)
\(=\dfrac{10\left(\sqrt[3]{3}+\sqrt[3]{2}\right)}{\left(\sqrt[3]{3}+\sqrt[3]{2}\right)\left(\sqrt[3]{9^2}-\sqrt[3]{6}+\sqrt[3]{2^2}\right)}\left(\dfrac{1+\sqrt{2}}{\sqrt{\left(1-\sqrt{3}\right)^2}}.\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\right)\)
\(=\dfrac{10\left(\sqrt[3]{3}+\sqrt[3]{2}\right)}{5}.\dfrac{1+\sqrt{2}}{\left|1-\sqrt{3}\right|}.\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\)
\(=2\left(\sqrt[3]{3}+\sqrt[3]{2}\right).\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=2\left(\sqrt[3]{3}+\sqrt[3]{2}\right).\dfrac{\left(\sqrt{2}\right)^2-1}{\left(\sqrt{3}\right)^2-1}\)
\(=\sqrt[3]{3}+\sqrt[3]{2}\)
Vậy...
rút gọn biểu thức
a) \(\left(\sqrt{7}-\sqrt{2}\right).\left(\sqrt{9+2\sqrt{14}}\right)\)
b) \(\sqrt{\sqrt{13}-\sqrt{3-\sqrt{13}}-4\sqrt{3}}\)
c) \(\sqrt{80-\sqrt{321-16\sqrt{5}}-\sqrt{226-80\sqrt{5}-\sqrt{89-25\sqrt{5}}}}\)
d) \(\dfrac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-\dfrac{6\sqrt{2}-4}{3-\sqrt{2}}\)
e) \(\dfrac{\sqrt{6-\sqrt{11}}}{\sqrt{22}-\sqrt{2}}+\dfrac{6}{\sqrt{2}}-\dfrac{3}{\sqrt{2}+1}\)
f) \(\dfrac{\sqrt{2}}{2\sqrt{2}+\sqrt{3}+\sqrt{5}}+\dfrac{\sqrt{2}}{2\sqrt{2}-\sqrt{3}-\sqrt{5}}\)
g) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
a) Ta có: \(\left(\sqrt{7}-\sqrt{2}\right)\cdot\sqrt{9+2\sqrt{14}}\)
\(=\left(\sqrt{7}-\sqrt{2}\right)\cdot\left(\sqrt{7}+\sqrt{2}\right)\)
=7-2
=5
d) Ta có: \(\dfrac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-\dfrac{6\sqrt{2}-4}{3-\sqrt{2}}\)
\(=2\sqrt{2}-\sqrt{7}+5\sqrt{7}-\dfrac{2\sqrt{2}\left(3-\sqrt{2}\right)}{3-\sqrt{2}}\)
\(=2\sqrt{2}+4\sqrt{7}-2\sqrt{2}\)
\(=4\sqrt{7}\)
Rút gọn: \(\frac{\sqrt{1+2\sqrt{5\sqrt{\text{7}}-13}}-\sqrt{\sqrt{\text{7}}-2}}{\sqrt{3}-\sqrt{\text{7}}}-\sqrt{\frac{2}{3-\sqrt{5}}}\)
Rút gọn
A= \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
B= \(\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)
\(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}.\)
\(\Rightarrow A^2=4+\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{2}}\right)\left(4-\sqrt{10+2\sqrt{2}}\right)}+4-\sqrt{10+2\sqrt{5}}\)
\(=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)
\(=8+2\sqrt{6-2\sqrt{5}}\)
\(=8+2\sqrt{5-2\sqrt{5.1}+1}=8+2\left(\sqrt{5}-1\right)\)
\(=8+2\sqrt{5}-2=6+2\sqrt{5}\)
\(=\left(\sqrt{5}+1\right)^2\)
\(\Rightarrow A=\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}+1\)
\(B=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)
\(=\frac{1-\sqrt{5}}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+\frac{\sqrt{5}-\sqrt{9}}{\left(\sqrt{5}+\sqrt{9}\right)\left(\sqrt{5}-\sqrt{9}\right)}+...+\frac{\sqrt{2001}-\sqrt{2005}}{\left(\sqrt{2001}+\sqrt{2005}\right)\left(\sqrt{2001}-\sqrt{2005}\right)}\)
\(=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)
\(=-\frac{1}{4}\left(1-\sqrt{5}+\sqrt{5}-\sqrt{9}+....+\sqrt{2001}-\sqrt{2005}\right)\)
\(=-\frac{1}{4}\left(1-\sqrt{2005}\right)\)
\(=10,94430659\)
\(\text{Lm hơi vắn tắt thông cảm nha!!}\)
rút gọn biểu thức
a.\(2\sqrt{80}+3\sqrt{45}-\sqrt{245}\)
b.\(\dfrac{3}{2+\sqrt{3}}+\dfrac{13}{4-\sqrt{3}}+\dfrac{6}{\sqrt{3}}\)
c.\(\left(\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
d.\(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{28-10\sqrt{3}}\)
Lời giải:
a.
\(=2\sqrt{4^2.5}+3\sqrt{3^2.5}-\sqrt{7^2.5}=2.4\sqrt{5}+3.3\sqrt{5}-7\sqrt{5}\)
\(=8\sqrt{5}+9\sqrt{5}-7\sqrt{5}=10\sqrt{5}\)
b.
\(=\frac{3(2-\sqrt{3})}{(2-\sqrt{3})(2+\sqrt{3})}+\frac{13(4+\sqrt{3})}{(4-\sqrt{3})(4+\sqrt{3})}+\frac{6\sqrt{3}}{3}\)
\(=\frac{6-3\sqrt{3}}{1}+\frac{13(4+\sqrt{3})}{13}+2\sqrt{3}=6-3\sqrt{3}+4+\sqrt{3}+2\sqrt{3}\)
\(=10\)
c.
\(=\left[\frac{\sqrt{7}(\sqrt{2}-1)}{\sqrt{2}-1}+\frac{\sqrt{5}(\sqrt{3}-1)}{\sqrt{3}-1}\right].(\sqrt{7}-\sqrt{5})\)
\(=(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})=7-5=2\)
d.
\(=|2+\sqrt{3}|-\sqrt{5^2-2.5\sqrt{3}+3}=|2+\sqrt{3}|-\sqrt{(5-\sqrt{3})^2}\)
\(=|2+\sqrt{3}|-|5-\sqrt{3}|=2+\sqrt{3}-(5-\sqrt{3})=-3+2\sqrt{3}\)
Bài 1: Rút gọn biểu thức dạng chữ:
1) \(A=\dfrac{2\sqrt{x}+13}{x+5\sqrt{x}+6}+\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{2\sqrt{x-1}}{\sqrt{x}+3}\) ( với \(x\ge0\))
2) \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{3}{\sqrt{x}-3}\right).\dfrac{\sqrt{3}+3}{x+9}\)( với x\(\ge0,\) x\(\ne9\))
1) Rút gọn:
a) A = \(\sqrt{5-2\sqrt{3-\sqrt{3}}}-\sqrt{3+\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
b) B = \(\sqrt{13+\sqrt{2}+5\sqrt{1+2\sqrt{2}}}+\sqrt{13+\sqrt{2}+5\sqrt{1+2\sqrt{2}}}\)
c) C = \(\dfrac{\sqrt{21+3\sqrt{5}}+\sqrt{21-3\sqrt{5}}}{\sqrt{21}+6\sqrt{11}}+\sqrt{11-6\sqrt{2}}\)
d) D = \(\left(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\right).\sqrt{\dfrac{2+2\sqrt{5}}{2+\sqrt{5}}}\)
e) E = \(\dfrac{\left(27+10\sqrt{2}\right)\sqrt{27-10\sqrt{2}}-\left(27-10\sqrt{2}\right)\sqrt{27+10\sqrt{2}}}{\left(\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}\right):\sqrt{\sqrt{13}+2}}\)