cho a,b,c>0 thỏa mãn \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge2\). Cmr: abc ≤ \(\frac{1}{8}\)
Cho a,b,c khác 0 thỏa mãn \(\frac{1}{a+1}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)
Chứng minh rằng: abc\(\le\frac{1}{8}\)
\(\frac{1}{a+1}\ge1-\frac{1}{b+1}+1-\frac{1}{c+1}=\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\).
Tương tự ta có: \(\frac{1}{b+1}\ge2\sqrt{\frac{ac}{\left(a+1\right)\left(c+1\right)}}\), \(\frac{1}{c+1}\ge2\sqrt{\frac{ab}{\left(a+1\right)\left(b+1\right)}}\).
Nhân 3 bất đẳng thức trên theo vế ta được:
\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)
\(\Leftrightarrow abc\le\frac{1}{8}\).
Cho 3 số thực dương a, b, c thỏa mãn abc = 1. CMR:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+3\ge2\left(a+b+c\right)\)
\(\frac{1}{a^2}=\frac{1}{\left(bc\right)^2}\)
\(\Rightarrow\frac{1}{a^2}+1=\frac{1}{\left(bc\right)^2}+1\ge2\frac{1}{bc}=2a\)
Bạn Hoàng sai rồi nhé:
cho \(a=\frac{3}{2};b=2;c=\frac{1}{3}\) (t/m đk abc=1)
Suy ra \(a+b+c=\frac{3}{2}+2+\frac{1}{3}=3,8\left(3\right)>3\) nhé
Vì abc = 1 nên ta viết bất đẳng đẳng lại thành:\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{3}{abc}\ge2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(a;b;c\right)\). Khi đó ta cần chứng minh \(a^2+b^2+c^2+3abc\ge2\left(ab+bc+ca\right)\)với abc = 1
Theo nguyên lí Dirichlet thì trong ba số a - 1; b - 1; c - 1 tồn tại ít nhất hai số cùng dấu. Giả sử hai số đó là a - 1 và b - 1 thì \(\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab\ge a+b-1\Leftrightarrow abc\ge ac+bc-c\)
Khi đó \(a^2+b^2+c^2+3abc\ge a^2+b^2+c^2+3\left(ac+bc-c\right)\)nên phép chứng minh sẽ hoàn tất nếu ta chỉ ra được rằng \(a^2+b^2+c^2+3\left(ac+bc-c\right)\ge2\left(ab+bc+ca\right)\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(a-b\right)^2+c\left(a+b+c-3\right)\ge0\)(Luôn đúng vì theo AM - GM cho 3 số dương thì \(a+b+c\ge3\sqrt[3]{abc}=3\))
Đẳng thức xảy ra khi a = b = c = 1
Cho ba số dương a, b, c thỏa mãn \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\). Chứng minh\(abc\le\frac{1}{8}\)
Ta có: \(\frac{1}{a+1}\ge2-\frac{1}{b+1}-\frac{1}{c+1}=\left(1-\frac{1}{b+1}\right)+\left(1-\frac{1}{c+1}\right)=\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\)
Tương tự \(\frac{1}{b+1}\ge\frac{c}{c+1}+\frac{a}{a+1}\ge2\sqrt{\frac{ca}{\left(c+1\right)\left(a+1\right)}}\)
\(\frac{1}{c+1}\ge\frac{a}{a+1}+\frac{b}{b+1}\ge2\sqrt{\frac{ab}{\left(a+1\right)\left(b+1\right)}}\)
Nhân từng vế, ta có:
\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)
\(\Rightarrow abc\le\frac{1}{8}\)
Cho 3 số dương a, b, c thỏa mãn \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)
Chứng minh rằng: \(abc\ge\frac{1}{8}\)
\(\frac{1}{a+1}\ge1-\frac{1}{b+1}+1-\frac{1}{c+1}=\frac{b}{b+1}+\frac{c}{c+1}\ge\frac{2\sqrt{bc}}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)
hai cái kia tương tự rồi nhân cả ba cái lại ra được đpcm
Cho a,b,c dương thỏa mãn abc=1. Chứng minh rằng:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\left(\frac{b}{a}+\frac{a}{c}+\frac{c}{b}\right)\ge2\left(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a,b,c > 0 thỏa mãn a + b + c > 1
CMR: \(\frac{a+bc}{b+c}+\frac{b+ca}{c+a}+\frac{c+ab}{a+b}\ge2\)
mik ví dụ 1 biểu thức nha
a(a+b+c)+bc/b+c=a^2+ab+ac+bc/b+c=(a+c)(a+b)/b+c
tương tự với mấy biểu thức còn lại
cái bài này mik làm rồi mà giờ ko nhớ nữa
Cho \(a,b,c>0\) biết\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\) CMR \(abc\le\frac{1}{8}\)
Ta có
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)
\(\Rightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)
\(\Rightarrow\frac{1}{1+a}\ge\frac{1+b-1}{1+b}+\frac{1+c-1}{1+c}\)
\(\Rightarrow\frac{1}{1+a}\ge\frac{b}{1+b}+\frac{c}{1+c}\le2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)( nhỏ hơn vậy do bất đẳng thức Cosy với 2 số)
tương tư ta chứng minh được
\(\hept{\begin{cases}\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\\\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\end{cases}}\)
Nhân vế theo vế của 3 bất đẳng thức vừa chứng mình được
\(\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}.2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}.2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\)
\(\Rightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\sqrt{\frac{a^2b^2c^2}{\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2}}\)
\(\Rightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8abc.\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Rightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}:\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8abc\)
\(\Rightarrow\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8abc\)
\(\Rightarrow1\ge8abc\Rightarrow\frac{1}{8}\ge abc\)
Ủng hộ cho mình 1 cái T I C K nha . Cảm ơn bạn rất nhiều
____________________________CHÚC BẠN HỌC TỐT NHA ________________________________
Dấu "=" nữa Tùng ơi!
Cơ mà Linh k rùi, vất vả quá! :D
à quên nữa . Cảm ơn Linh mai sáng bổ sung luôn giờ mệt quá !!!
Cho a,b,c >0 thỏa mãn abc=1. CMR: \(\frac{a}{ab+1}+\frac{b}{bc+1}+\frac{c}{ca+1}\ge\frac{3}{2}\)
Câu 1: Cho x, y>0 thỏa x+y=1
CMR: \(\frac{x^2}{x+3y}+\frac{y^2}{y+3x}\ge\frac{1}{4}\)
Câu 2: Cho a,b,c,d >0 thỏa a+b+c+d=4
CMR: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1}\ge2\)
câu 1.Ta có:
\(\frac{x^2}{x+3y}+\frac{x+3y}{16}\ge2\sqrt{\frac{x^2}{x+3y}.\frac{x+3y}{16}}=\frac{x}{2}\)
\(\frac{y^2}{y+3x}+\frac{y+3x}{16}\ge2\sqrt{\frac{y^2}{y+3x}.\frac{y+3x}{16}}=\frac{y}{2}\)
\(\frac{x^2}{x+3y}+\frac{y^2}{y+3x}+\frac{x+y+3x+3y}{16}\ge\frac{x+y}{2}\)
\(\frac{x^2}{x+3y}+\frac{y^2}{y+3x}+\frac{1}{4}\ge\frac{1}{2}\)
\(\frac{x^2}{x+3y}+\frac{y^2}{y+3x}\ge\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\left(đpcm\right)\)
Câu 2:
điều kiện \(a^2+b^2+c^2+d^2=4\)(đúng ko)
Ta có:
\(\frac{1}{a^2+1}+\frac{a^2+1}{4}\ge2\sqrt{\frac{1}{a^2+1}.\frac{a^2+1}{4}}=1\)
\(\frac{1}{b^2+1}.\frac{b^2+1}{4}\ge2\sqrt{\frac{1}{b^2+1}.\frac{b^2+1}{4}}=1\)
\(\frac{1}{c^2+1}+\frac{c^2+1}{4}\ge2\sqrt{\frac{1}{c^2+1}.\frac{c^2+1}{4}}=1\)
\(\frac{1}{d^2+1}+\frac{d^2+1}{4}\ge2\sqrt{\frac{1}{d^2+1}.\frac{d^2+1}{4}}=1\)
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1}+\frac{a^2+b^2+c^2+d^2+4}{4}\ge4\)
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1}\ge4-\frac{8}{4}=2\left(đpcm\right)\)
Bạn ơi 2 dòng cuối ở câu 2 mình chưa hiểu lắm, làm sao để mất \(a^2+b^2+c^2+d^2\)được vậy?
đề đúng \(a+b+c+d=4\)
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1}+\frac{a^2+b^2+c^2+d^2+4}{4}\ge4\) ( đến đây là đúng nhé )
Có \(\frac{a^2+b^2+c^2+d^2+4}{4}\ge\frac{\frac{\left(a+b+c+d\right)^2}{4}+4}{4}=\frac{\frac{4^2}{4}+4}{4}=\frac{8}{4}=2\)
\(\Rightarrow\)\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1}\ge4-2=2\) ( đpcm )