Những câu hỏi liên quan
CN
Xem chi tiết
CF
8 tháng 2 2020 lúc 16:34

Tham khảo

https://hoc24.vn/hoi-dap/question/814814.html

Bình luận (0)
 Khách vãng lai đã xóa
H24
8 tháng 2 2020 lúc 16:40

B=11.2+13.4+15.6+....+12019.2020

⇒2B=21.2+23.4+25.6+....+22019.2020

<1+12.3+13.4+14.5+15.6+....+12018.2019+12019.2020

2B<1+3−22.3+4−33.4+5−44.5+....+2019−20182018.2019+2020−20192019.2020

2B<1+12−13+13−14+...+12019−12020

2B<1+12−12020<1+12

B<34

---------------------

Đặt 22018=a;32019=b;52020=c(a,b,c>0)

A=aa+b+bb+c+cc+a>aa+b+c+ba+b+c+ca+b+c=1

⇒A>1>34>B

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
IS
28 tháng 3 2020 lúc 22:16

\(\hept{\begin{cases}A=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}^{ }\\B=-\frac{1}{2020}-\frac{7}{2019^2}-\frac{5}{2019^3}-\frac{3}{2019^4}\end{cases}}\)

=>\(A-B=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}+\frac{1}{2020}+\frac{7}{2019^2}+\frac{5}{2019^3}+\frac{3}{2019^4}\)

\(=>A-B=\left(-\frac{3}{2019^2}+\frac{7}{2019^2}\right)+\left(-\frac{7}{2019^4}+\frac{3}{2019^4}\right)\)

=>\(A-B=\frac{4}{2019^2}+-\frac{4}{2019^4}\)

=>\(A-B=\frac{2019^2.4}{2019^4}-\frac{4}{2019^4}\)

=>\(A>B\)

cách này mình tự nghĩ 

Bình luận (0)
 Khách vãng lai đã xóa
NT
28 tháng 3 2020 lúc 22:23

thank you \(v\text{er}y^{1000000000000}\)much

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
LC
9 tháng 10 2019 lúc 22:13

Sửa đề \(\frac{2019}{1}+\frac{2018}{2}+...+\frac{1}{2019}\)

Ta có: \(\frac{2019}{1}+\frac{2018}{2}+...+\frac{1}{2019}\)

\(=\left(2019+1\right)+\left(\frac{2018}{2}+1\right)+...+\left(\frac{1}{2019}+1\right)-2019\)

\(=2020+\frac{2020}{2}+...+\frac{2020}{2019}+\frac{2020}{2020}-2020\)

\(=\frac{2020}{2}+...+\frac{2020}{2019}+\frac{2020}{2020}\)

\(=2020.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)\)Thay vào biểu thức A ta được:

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}}{2020.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)}=\frac{1}{2020}\)

Bình luận (0)
NC
Xem chi tiết
AH
28 tháng 3 2020 lúc 23:50

Lời giải:

\(A-B=\frac{4}{2019^2}-\frac{4}{2019^4}\)

Dễ thấy $0< 2019^2< 2019^4\Rightarrow \frac{4}{2019^2}> \frac{4}{2019^4}$

$\Rightarrow A-B=\frac{4}{2019^2}-\frac{4}{2019^4}>0$

$\Rightarrow A>B$

Bình luận (0)
 Khách vãng lai đã xóa
YY
Xem chi tiết
HS
Xem chi tiết
HS
15 tháng 5 2019 lúc 9:23

\(\frac{2019}{210}+\frac{2019}{280}+\frac{2019}{360}+\frac{2019}{450}+\frac{2019}{550}\)

\(=\frac{673}{70}+\frac{2019}{280}+\frac{673}{120}+\frac{673}{150}+\frac{2019}{550}\)

\(=\left[\frac{673}{70}+\frac{2019}{280}\right]+\frac{673}{120}+\frac{673}{150}+\frac{2019}{550}\)

\(=\left[\frac{2692}{280}+\frac{2019}{280}\right]+\frac{673}{120}+\frac{673}{150}+\frac{2019}{550}\)

\(=\frac{673}{40}+\frac{673}{120}+\frac{673}{150}+\frac{2019}{550}\)

\(=\left[\frac{673}{40}+\frac{673}{120}\right]+\frac{673}{150}+\frac{2019}{550}\)

\(=\left[\frac{2019}{120}+\frac{673}{120}\right]+\frac{673}{150}+\frac{2019}{550}\)

\(=\frac{673}{30}+\frac{673}{150}+\frac{2019}{550}\)

\(=\left[\frac{673}{30}+\frac{673}{150}\right]+\frac{2019}{550}\)

\(=\frac{673}{25}+\frac{2019}{550}=\frac{14806}{550}+\frac{2019}{550}=\frac{16825}{550}=\frac{673}{22}\)

P/S : Các a chị check dùm em ạ

Bình luận (0)
NV
Xem chi tiết
ST
30 tháng 10 2018 lúc 21:43

\(a+b=c+\frac{1}{2019}\Leftrightarrow a+b-c=\frac{1}{2019}\Leftrightarrow\frac{1}{a+b-c}=2019\)

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}+2019\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=2019\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=\frac{1}{a+b-c}\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b-c}+\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{a+b}{c\left(a+b-c\right)}\Leftrightarrow c\left(a+b-c\right)\left(a+b\right)=\left(a+b\right)ab\)

\(\Leftrightarrow c\left(a+b-c\right)\left(a+b\right)-ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ca+bc-c^2-ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[c\left(a-c\right)-b\left(a-c\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(c-b\right)\left(a-c\right)=0\)

=>a=-b hoặc c=b hoặc a=c

không mất tính tổng quát, giả sử a=-b, ta có:

\(P=\left(-b^{2019}+b^{2019}-c^{2019}\right)\left(-\frac{1}{b^{2019}}+\frac{1}{b^{2019}}-\frac{1}{c^{2019}}\right)=\left(-c\right)^{2019}\cdot\left(\frac{-1}{c}\right)^{2019}=1\)

tương tư với các trường hợp khác ta cũng có P=1

Vậy P=1

Bình luận (0)
KC
Xem chi tiết
DH
14 tháng 11 2019 lúc 8:06

Violympic toán 8

Bình luận (0)
 Khách vãng lai đã xóa
DT
Xem chi tiết
TL
11 tháng 5 2020 lúc 12:44

Ta có bài toán tổng quát sau:Chứng minh rằng tổng \(A=\frac{n+1}{n^2+1}+\frac{n+1}{n^2+2}+....+\frac{n+1}{n^2+n}\)(n số hạng và n>1) không phải là số nguyên dương ta có:

\(1=\frac{n+1}{n^2+1}+\frac{n+1}{n^2+2}+...+\frac{n+1}{n^2+3}< \frac{n+1}{n^2+1}+\frac{n+1}{n^2+2}+....+\frac{n+1}{n^2+n}< \frac{n+1}{n^2}+\frac{n+1}{n^2}\)\(+....+\frac{n+1}{n^2}=2\)

Do đó A không phải là số nguyên dương với n=2019 thì ta có bài toán đã cho

Bình luận (0)
 Khách vãng lai đã xóa