Những câu hỏi liên quan
VN
Xem chi tiết
TV
Xem chi tiết
NA
Xem chi tiết
NH
22 tháng 8 2018 lúc 14:50

\(\sqrt{x-1}-3=0\)

\(\Leftrightarrow\sqrt{x-1}=3\)

\(\Leftrightarrow\sqrt{x-1}=\sqrt{9}\)

\(\Leftrightarrow x-1=9\Leftrightarrow x=10\)

Bình luận (0)
NA
22 tháng 8 2018 lúc 14:54

ý mình là biểu thức x nhan voi căn bậc hai

Bình luận (0)
VD
Xem chi tiết
LD
5 tháng 4 2019 lúc 13:36

a)

\(\Delta'=\left(-2\right)^2-\left(4m-m^2\right)=4-4m+m^2=\left(m-2\right)^2\ge0\)

\(\Delta'\ge0\) nên phương trình có nghiệm với mọi m

b) Theo Vi-ét có

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=4m-m^2\end{matrix}\right.\)

Lấy phương trình đầu của hệ, kết hợp với đề bài, có

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_2=x_1^2-5x_1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\x_2=x_1^2-5x_1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\x_1^2-5x_1=4-x_1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\x^2-4x_1+4=8\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\\left(x_1-2\right)^2=8\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\\left[{}\begin{matrix}x_1=2+2\sqrt{2}\\x_1=2-2\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1=2+2\sqrt{2}\\x_2=2+2\sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x_1=2-2\sqrt{2}\\x_2=2-2\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

Ta có

\(x_1x_2=4m-m^2\)

Đã tìm được \(x_1\)\(x_2\) , thay vào để tìm m

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
AH
30 tháng 10 2024 lúc 19:41

Lời giải:

Áp dụng định lý Viet:

$x_1+x_2=\frac{-4}{2}=-2$

$x_1x_2=\frac{-1}{2}$

Khi đó:

$A=x_1x_2^3+x_1^3x_2=x_1x_2(x_1^2+x_2^2)$

$=x_1x_2[(x_1+x_2)^2-2x_1x_2]$

$=\frac{-1}{2}[(-2)^2-2.\frac{-1}{2}]=\frac{-5}{2}$

Bình luận (0)
H24
Xem chi tiết
HN
26 tháng 5 2016 lúc 0:23

Ta có : \(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}=1.\sqrt{x+y}+1.\sqrt{y+z}+1.\sqrt{z+x}\)

\(\Rightarrow\left(1.\sqrt{x+y}+1.\sqrt{y+z}+1.\sqrt{z+x}\right)^2\le\left(1^2+1^2+1^2\right)\left(x+y+y+z+z+x\right)=3.2\left(x+y+z\right)=18\)

(Áp dụng bất đẳng thức Bunhiacopxki)

Vậy : Max P = \(3\sqrt{2}\Leftrightarrow\hept{\begin{cases}x+y+z=3\\\sqrt{x+y}=\sqrt{y+z}=\sqrt{z+x}\end{cases}\Leftrightarrow x=y=z=1}\)

Bình luận (0)
OO
25 tháng 5 2016 lúc 23:36

áp dụng bất đẳng thức Cô-si cho 2 số dương, ta có:

\(\sqrt{x+y}\)< hoặc =\(\frac{x+y}{2}\)

\(\sqrt{y+z}\)< hoặc =\(\frac{y+z}{2}\)

\(\sqrt{x+z}\)< hoặc =\(\frac{x+z}{2}\)

=>\(\sqrt{x+y}+\sqrt{y+z}+\sqrt{x+z}\)< hoặc =\(\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}=x+y+z=3\)

dấu = xảy ra<=>x=y=z

Vậy GTLN của biểu thúc là 3 khi x=y=z

Bình luận (0)
BD
Xem chi tiết
PL
19 tháng 6 2019 lúc 11:44

\(a,\)\(\sqrt{\left(x-1\right)\left(x-3\right)}\)

\(đkxđ\Leftrightarrow\left(x-1\right)\left(x-3\right)\ge0\)

\(\orbr{\begin{cases}x-1\ge0;x-3\ge0\\x-1< 0;x-3< 0\end{cases}\Rightarrow\orbr{\begin{cases}x\ge1;x\ge3\\x< 1;x< 3\end{cases}\Rightarrow}\orbr{\begin{cases}x\ge3\\x< 1\end{cases}}}\)

\(b,\)\(\sqrt{\frac{4}{x+3}}\)

\(đkxđ\Leftrightarrow\orbr{\begin{cases}x+3\ne0\\x+3\ge0\end{cases}\Rightarrow x+3>0}\)\(\Rightarrow x>-3\)

Bình luận (0)