TH

Những câu hỏi liên quan
PD
Xem chi tiết
H24
4 tháng 10 2022 lúc 20:58

ai bt tự làm

 

Bình luận (0)
DM
15 tháng 4 2023 lúc 15:33

ngu tự chịu

Bình luận (0)
KK
14 tháng 10 2024 lúc 5:54

Triệt tiêu hết mấy số kia rồi á bạn

Bình luận (0)
PD
Xem chi tiết
HH
Xem chi tiết
LH
6 tháng 12 2015 lúc 22:49

đăng làm gì cho mỏi tay

Bình luận (0)
LA
Xem chi tiết
NT
Xem chi tiết
NN
Xem chi tiết
PD
4 tháng 4 2016 lúc 17:45

thì tính tổng tử M áp dụng công thức thì tử M=

101*(101+1)/2=5151

mẫu M=

(101-100)+(99-98)+...+(3-2)+(1-0)(có 51 cặp số)

=1+1+1+...+1+1(có 51 cặp số)

=1*51

=51

M=5151/51

M=101

Bình luận (2)
PN
Xem chi tiết
NC
25 tháng 9 2019 lúc 8:59

Giải: 

Ta có:  1 + 2 + 3 + 4 + ... + 100 + 101 = ( 100 +1 ) + (99 + 2 ) +... + ( 50 + 51 ) + 101 = 101 + 101 +... + 101 + 101 = 101. 51

            1 - 2 + 3 - 4 + ... - 100 +101 = 1+ ( 3 - 2) + ( 5 - 4 ) +... + ( 101 - 100 ) = 1 + 1 +... + 1 = 1. 51

=> \(\frac{1+2+3+4+5+...+100+101}{1-2+3-4+5-...-100+101}=\frac{51.101}{51.1}=\frac{101}{1}=101\)

Bình luận (0)
LA
Xem chi tiết
DH
22 tháng 6 2021 lúc 0:37

Câu 2: 

\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)

Có \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge0\)

do đó phương trình ban đầu tương đương với: 

\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)

\(\Leftrightarrow100x+\left(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\right)=101x\)

\(\Leftrightarrow x=\frac{100.101}{2.101}=50\)

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
NL
26 tháng 3 2019 lúc 21:33

\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{101}{3^{101}}\) (1)

\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{100}{3^{101}}+\frac{101}{3^{102}}\) (2)

Trừ (1) cho (2):

\(\frac{2}{3}A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{101}}-\frac{101}{3^{102}}=B-\frac{101}{3^{102}}\)

\(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{101}}\)

\(\Rightarrow\frac{1}{3}B=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{101}}+\frac{1}{3^{102}}\)

\(\Rightarrow\frac{1}{3}B+\frac{1}{3}-\frac{1}{3^{102}}=\frac{1}{3}+\frac{1}{3^2}+..+\frac{1}{3^{101}}=B\)

\(\Rightarrow\frac{2}{3}B=\frac{1}{3}-\frac{1}{3^{102}}\Rightarrow B=\frac{1}{2}\left(1-\frac{1}{3^{101}}\right)=\frac{1}{2}-\frac{1}{2.3^{101}}\Rightarrow B< \frac{1}{2}\)

\(\Rightarrow A=\frac{3}{2}\left(B-\frac{101}{3^{102}}\right)< \frac{3}{2}B< \frac{3}{2}.\frac{1}{2}=\frac{3}{4}\)

Bình luận (0)
NH
Xem chi tiết