Những câu hỏi liên quan
PH
Xem chi tiết
CH
Xem chi tiết
DH
31 tháng 8 2017 lúc 21:10

Để \(n^2+n+1589\) là số chính phương thì \(n^2+n+1589=a^2\left(a\in Z\right)\)

\(\Leftrightarrow4n^2+4n+6356=4a^2\)

\(\Leftrightarrow\left(4n^2+4n+1\right)+5355=\left(2a\right)^2\)

\(\Leftrightarrow\left(2n+1\right)^2-\left(2a\right)^2=-5355\)

\(\)\(\Leftrightarrow\left(2n-2a+1\right)\left(2n+2a+1\right)=-5355\)

Từ đây xét 2n - 2a + 1 ; 2n + 2a + 1 là các ước của - 5355 là ra

Bình luận (0)
LT
31 tháng 8 2017 lúc 21:10

\(n^2+n+1589\)

\(n^2+n+1589=m^2\)

\(\Rightarrow\left(4n^2+1\right)^2+6355=4m^2\)

\(\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=6355\)

\(2m+2n+1>2m-2n-1>0\)

Ta viết:\(\left(2m+2n+1\right)\left(2m-2n-1\right)=6355\cdot1=1271\cdot5=205\cdot31=155\cdot414\)

\(\Rightarrow n=\text{ 1588,316,43,28}\)

Bình luận (0)
PA
Xem chi tiết
NN
Xem chi tiết
GH
Xem chi tiết
NL
5 tháng 1 2024 lúc 7:03

Đặt \(n^2-3n=m^2\) với \(m\in N\)

\(\Rightarrow4n^2-12n=4m^2\)

\(\Rightarrow4n^2-12n+9=4m^2+9\)

\(\Rightarrow\left(2n-3\right)^2-\left(2m\right)^2=9\)

\(\Rightarrow\left(2n-3-2m\right)\left(2n-3+2m\right)=9\)

2n-3-2m-9-3-1139
2n-3+2m-1-3-9931
n-10-1434
m20-220-2

Vậy \(n=\left\{0;3;4\right\}\) là các giá trị thỏa mãn

Bình luận (0)
ND
Xem chi tiết
AH
16 tháng 10 2021 lúc 18:15

Lời giải:

Đặt  $n^2-2n+2020=a^2$ với $a\in\mathbb{N}^*$

$\Leftrightarrow (n-1)^2+2019=a^2$

$\Leftrightarrow 2019=(a-n+1)(a+n-1)$

Với $a\in\mathbb{N}^*, n\in\mathbb{N}$ thì $a+n-1>0$

$\Rightarrow a-n+1>0$. Vậy $a+n-1> a-n+1>0$

Mà tích của chúng bằng $2019$ nên ta có các TH sau:

TH1: $a+n-1=2019; a-n+1=1$

$\Rightarrow n=1010$ (tm)

TH2: $a+n-1=673, a-n+1=3$

$\Rightarrow n=336$

 

 

Bình luận (0)
TN
Xem chi tiết
NN
3 tháng 7 2017 lúc 20:35

Giải:

Đặt \(n^2+n+1589=m^2\left(m\in N\right)\Rightarrow\left(4n^2+1\right)^2+6355=4m^2\)

                                                                \(\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=6355\)

Nhân xét thấy \(2m+2n+1>2m-2n-1>0\) và chúng la những số lẻ nên ta có thể viết:

\(\left(2m+2n+1\right)\left(2m-2n-1\right)=3655.1=1271.5=205.31=\) \(155.41\)

\(\Leftrightarrow n=1588;316;43;28\)

\(\Rightarrow\) Tổng \(=1588+316+43+28=1975\)

Bình luận (0)
TT
31 tháng 8 2017 lúc 21:00

1975 bạn nhé

Bình luận (0)
JM
Xem chi tiết
V1
1 tháng 2 2016 lúc 8:51

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

Bình luận (0)
ZR
1 tháng 2 2016 lúc 8:46

Đặt n2+2006=a2 (a\(\in\)Z)
=> 2006=a- n = (a - n)(a + n) (1)

Mà (a + n) - (a - n) = 2n chia hết cho 2

=>a + n và a - n có cùng tính chẵn lẻ

+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)

+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)

Vậy không có n thỏa mãn n2 +2006 là số chính phương

Bình luận (0)
AA
Xem chi tiết
CU
24 tháng 1 2016 lúc 21:31

ko có số n nào thỏa mãn

Bình luận (0)
HD
24 tháng 1 2016 lúc 21:31

n không thuộc bất cứ giá trị nào

Bình luận (0)
FT
24 tháng 1 2016 lúc 21:32

n thuộc rỗng    

Bình luận (0)