Những câu hỏi liên quan
NT
Xem chi tiết
H24
Xem chi tiết
NT
16 tháng 11 2021 lúc 17:07

    \(x^3-y^3-2y^2-3y-1=0\)

\(<=>x^3=y^3+2y^2+3y+1\)\(y^3+3y^2+3y+1=(y+1)^3\)(vì \(y^2\)≥0) (1)

Ta có:\(x^3=y^3+2y^2+3y+1>y^3-3y^2+3y-1\)\(=(y-1)^3\) (2)

Từ (1) và (2) 

\(=>(y-1)^3< y^3+2y^2+3y+1=x^3 =<(y+1)^3\)

\(=>y^3+2y^2+3y+1=y^3,(y+1)^3\)

Xong giải ra thôi

Bình luận (0)
NT
16 tháng 11 2021 lúc 17:07

Rất xin lỗi bạn vì đến năm 2021 bn ms nhận được câu trả lời

Bình luận (0)
LP
Xem chi tiết
LL
Xem chi tiết
TA
Xem chi tiết
NT
16 tháng 11 2021 lúc 14:55

Tuy đã 5 năm rồi nhưng tôi vẵn làm vậy :)

Bình luận (0)
NT
16 tháng 11 2021 lúc 15:11

cái này phải vận dụng cái giả thiết cho là nghiệm nguyên dương

 

Bình luận (0)
NT
16 tháng 11 2021 lúc 16:43

   \( x^2+(x+y)^2=(x+9)^2\)

\(<=>x^2+x^2+2xy+y^2=x^2+18x+81\)

\(<=>(x+y)^2=18x+81\)

Ta có:\((x+y)^2-x^2=(x+y-x)(x+y+x)=y(2x+y)>0\)

\(=>(x+y)^2>x^2\)

\(=>18x+81>x^2\)

\(=>x^2+18x+81>2x^2>x^2\) (1)

Lại có:\(18x+81=(x^2+18x+81)-x^2=(x+9)^2-x^2<(x+9)^2\)(2)

Từ (1) và (2)

\(=>x^2<18x+81=(x+y)^2<(x+9)^2\)

\(=>18x+81=(x+1)^2,(x+2)^2,...,(x+8)^2\)

Chịu khó giải ra nha bn

Bình luận (0)
VD
Xem chi tiết
MS
25 tháng 11 2018 lúc 15:10

Ta có:

\(x^2y^2-2x\left(y+2\right)+4=0\)

\(\Leftrightarrow x^2y^2-2xy+4=4x\)

\(\Leftrightarrow\left(xy-1\right)^2+3=4x\)

\(\left(xy-1\right)^2+3>0\)

Nên 4x>0

x>0

Ta có:

\(x^2y^2-2x\left(y+2\right)+4=0\)

\(\Leftrightarrow x^2y^2+4=2x\left(y+2\right)\)

\(x^2y^2+4>0\forall x,y\)

Nên \(2x\left(y+2\right)>0\)

Mặt khác x>0

nên y+2>0

=> y>-2 (1)

Áp dụng bđt Cosi ta có:

\(x^2y^2+4\ge4xy\)

\(\Leftrightarrow x^2y^2+4=2x\left(y+2\right)\)

Nên \(2x\left(y+2\right)\ge4xy\)

\(\Rightarrow y+2\ge2y\)

\(\Leftrightarrow y\le2\) (2)

Do y \(\in Z\) và ta đã có (1), (2)

Nên \(y\in\left\{-1;0;1;2\right\}\)

Th1: y = -1

\(\Rightarrow x^2-2x\left(-1+2\right)+4=0\)

\(\Leftrightarrow x^2-2x+4=0\)

\(\Leftrightarrow\left(x-1\right)^2+3=0\left(vl\right)\)

Th2: y = 0

\(\Rightarrow x^2-2x\left(0+2\right)+4=0\)

\(\Leftrightarrow x^2-4x+4=0\)

\(\Rightarrow x=2\) (nhận)

Th3: y = 1

\(\Rightarrow x^2-2x\left(1+2\right)+4=0\)

\(\Leftrightarrow x^2-6x+4=0\)

\(\Leftrightarrow\left(x-3\right)^2=5\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=-\sqrt{5}+3\end{matrix}\right.\)

Loại do x \(\in Z\)

Th4: y = 2

\(\Rightarrow x^2-2x\left(2+2\right)+4=0\)

\(\Leftrightarrow x^2-8x+4=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{12}+3\\x=-\sqrt{12}+3\end{matrix}\right.\)

Loại do x \(\in Z\)

Vậy \(\left(x;y\right)\in\left\{2;0\right\}\)

Bình luận (0)
MS
25 tháng 11 2018 lúc 15:22

4 Th sai cả rồi

do mình thế ngu

ra y \(\in\left\{-1;0;1;2\right\}\) thì bạn thế vô tính x nhé

Bình luận (0)
MS
25 tháng 11 2018 lúc 15:27

Th1 và Th3 thì mình làm đúng rồi

Th2 : y=0

\(\Rightarrow-2x\left(0+2\right)+4=0\)

\(\Leftrightarrow4x=4\Leftrightarrow x=1\) (nhận)

Th4: y=2

\(\Rightarrow4x^2-2x\left(2+2\right)+4=0\)

\(\Leftrightarrow4x^2-8x+4=0\)

\(\Rightarrow x=1\) (nhận)

Vậy \(\left(x;y\right)\in\left\{\left(1;0\right),\left(1;2\right)\right\}\)

Bình luận (0)
BL
Xem chi tiết
NT
16 tháng 11 2021 lúc 11:32

bạn làm giống như tìm x để nó là số cp thôi

 

 

Bình luận (0)
NT
16 tháng 11 2021 lúc 14:09

Đặt A=\(1+x+x^2+x^3+x^4\)

=>4A=\(4x^4+4x^3+4x^2+4x+4\)

    4A=\((4x^4+4x^3+x^2)+(x^2+4x+4)+2x^2\)\(=(2x^2+x)^2+(x+2)^2+2x^2>(2x^2+x)^2\) (1)

Lại có:

4A=\((4x^4+x^2+2^2+4x^3+4x+8x^2)-5x^2\)

4A=\((2x^2+x+2)^2-5x^2\)\(<(2x^2+x+2)^2\)(2)

Vì A là số chính phương

=>4A cũng là số chính phương

Từ (1) và (2)

=>4A=\((2x^2+x+1)^2\)

Mà 4A=4\((1+x+x^2+x^3+x^4)\)

=>\((2x^2+x+1)^2=4(1+x+x^2+x^3+x^4)\)

Từ đây giải phương trình ra thôi

Bình luận (0)
DD
Xem chi tiết
NQ
Xem chi tiết