chứng minh \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)
Cho x, y \(\in R\) thỏa mãn:
\(\left(x+\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)=2\)
Chứng minh rằng: \(x^3+y^3+3xy=1\)
Gt\(\Leftrightarrow\left(x+\sqrt{x^2+2}\right)\left(x-\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)=2\left(x-\sqrt{x^2+2}\right)\)
\(\Leftrightarrow-2\left(y-1+\sqrt{y^2-2y+3}\right)=2\left(x-\sqrt{x^2+2}\right)\)
\(\Leftrightarrow x-\sqrt{x^2+2}+y-1+\sqrt{y^2-2y+3}=0\) (*)
\(\left(x+\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)=2\)
\(\Leftrightarrow\left(x+\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)\left(y-1-\sqrt{y^2-2y+3}\right)=2\left(y-1-\sqrt{y^2-2y+3}\right)\)
\(\Leftrightarrow\left(x+\sqrt{x^2+2}\right).-2=2\left(y-1-\sqrt{y^2+2y+3}\right)\)
\(\Leftrightarrow y-1-\sqrt{y^2+2y+3}+x+\sqrt{x^2+2}=0\) (2*)
Cộng vế với vế của (*) và (2*) => \(2x+2y-2=0\)
\(\Leftrightarrow x+y=1\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\)
\(\Leftrightarrow x^3+y^3+3xy=1\)
Ta có:`(x+sqrt{x^2+2})(sqrt{x^2+2}-x)=2`
`<=>sqrt{x^2+2}-x=y-1+sqrt{y^2-2y+3}`
`<=>sqrt{x^2+2}-sqrt{y^2-2y+3}=x+y-1(1)`
CMTT:`sqrt{y^2-2y+3}-(y-1)=x+sqrt{x^2+2}`
`<=>sqrt{y^2-2y+3}-y+1=x+sqrt{x^2+2}`
`<=>sqrt{y^2-2y+3}-sqrt{x^2+2}=x+y-1(2)`
Cộng từng vế (1)(2) ta có:
`2(x+y-1)=0`
`<=>x+y-1=0`
`<=>x+y=1`
`<=>(x+y)^3=1`
`<=>x^3+y^3+3xy(x+y)=1`
`<=>x^3+y^3+3xy=1`(do `x+y=1`)
Chứng minh:
a) \(^{x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)}\)
b) \(\left(x+y\right)^3=x^3+3.x^2.y+3xy^2+y^3\)
\(\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3\)
\(=x^3-y^3=VT\left(đpcm\right)\)
\(\left(x+y\right)^3=\left(x+y\right)\left(x+y\right)\left(x+y\right)\)
\(=x^3+3x^2y+3xy^2+y^3\)
dễ mà
phần a) dưa vào kết quả tính ra rùi lm ngược lại
còn phần b)thì tách đầu bài thì ra kết quả
a) ta có: x3 + y3 = (x + y) (x2 - xy + y2)
=> x3 + y3 = (x + y) (x2 - xy + y2)
b) ta có: (x + y)3 = x3 + 3x2y + 3xy2 + y3
=> (x + y)3 = x3 + 3x2y + 3xy2 + y3
t i c k nha!! 45654645645767467567476547567562352543645768887907807856
Chứng minh rằng với mọi số nguyên x, y thì: \(\left(x^3+3xy^2\right)^3+\left(y^3+3x^2y\right)⋮3\Leftrightarrow x+y⋮3\)
Cho x=y+1. Chứng minh rằng:
a)\(x^3-y^3-3xy=1\)
b)\(\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)=x^{16}-y^{16}\)
a. Do \(x=y-1\Rightarrow x-y=1\)
Ta có:
\(A=x^3-y^3-3xy=\left(x-y\right)^3+3xy\left(x-y\right)-3xy=1^3+3xy.1-3xy=1\left(đpcm\right)\)
b. \(B=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\)
(Do \(x-y=1\))
(Bạn áp dụng hằng đẳng thức \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)vào bài toán)
Kết quả, \(B=x^{16}-y^{16}\left(đpcm\right)\)
a)\(x=y+1\Rightarrow x-y=1\Rightarrow\left(x-y\right)^3=1\)
Hay x3- 3xy(x-y) - y3=1 => x3- y3 -3xy =1
b) 1.(x+y)(x2+y2)(x4+y4)(x8+y8) = (x-y)(x+y)......................=(x2-y2)(x2+y2)..........=(x4-y4)(x4+y4)......=(x8-y8)(x8+y8) =x16-y16
cho \(\left(x+\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+1}\right)=2\)
chứng minh \(x^3+y^3+3xy=1\)
rut gon \(\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
Chứng minh rằng:
\(\left(y-z\right)^3.\left(1-x^3\right)+\left(z-x\right)^3.\left(1-y^3\right)+\left(x-y\right)^3.\left(1-z^3\right)=3\left(1-xyz\right)\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
Tính giá trị của biểu thức:
a) \(3{x^2}y - \left( {3xy - 6{x^2}y} \right) + \left( {5xy - 9{x^2}y} \right)\) tại \(x = \frac{2}{3}\), \(y = - \frac{3}{4}\)
b) \(x\left( {x - 2y} \right) - y\left( {{y^2} - 2x} \right)\) tại \(x = 5\), \(y = 3\)
`a, = 3x^2y - 3xy + 6x^2y + 5xy - 9x^2y`
`= 2xy`.
Thay `x = 2/3; y = -3/4` vào BT:
`2 . 2/3 . -3/4 = -1.`
`b, x(x-2y) - y(y^2-2x)`
`= x^2 - 2xy - y^3 + 2xy`
`= x^2 - y^3`
Thay `x = 5; y =3` vào BT:
`= 5^2 - 3^3 = 25 - 27 = -2`
a) \(3x^2y-\left(3xy-6x^2y\right)+\left(5xy-9x^2y\right)\)
\(=3x^2y-3xy+6x^2y+5xy-9x^2y\)
\(=2xy\)
Thay \(x=\dfrac{2}{3},y=-\dfrac{3}{4}\) vào Bt ta có:
\(2\cdot\dfrac{2}{3}\cdot-\dfrac{3}{4}=-1\)
b) \(x\left(x-2y\right)-y\left(y^2-2x\right)\)
\(=x^2-2xy-y^3+2xy\)
\(=x^2-y^3\)
Thay \(x=5,y=3\) vào Bt ta có:
\(5^2-3^3=-3\)
Cho x-y=7
Tính:
a/ \(A=x^3-3xy\left(x-y\right)-y^3-x^2-2xy-y^2\)
b/ \(B=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)