Những câu hỏi liên quan
LD
Xem chi tiết
TM
23 tháng 4 2017 lúc 17:55

Ta có: \(x^2+y^2+z^2\ge xy+yz+zx\)

<=>\(x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge3\left(xy+yz+zx\right)\)<=>\(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

<=>\(3^2\ge3\left(xy+yz+zx\right)\)<=>\(P=xy+yz+zx\le3\)=>Pmax=3 <=> x=y=z=1

Bình luận (0)
HH
25 tháng 5 2018 lúc 10:46

Ta có BĐT đúng sau:

x2 + y2 + z2 >= xy + yz + zx

<=> (x + y + z)2 >= 3(xy + yz + zx)

<=> 9 >= 3 P <=> P <=3 (dấu bằng khi x = y = z =1)

Bình luận (0)
H24
30 tháng 7 2020 lúc 8:34

chả biết

Bình luận (0)
 Khách vãng lai đã xóa
DD
Xem chi tiết
NL
22 tháng 11 2016 lúc 20:10

 với mọi x, y, z ta có: 
(x-y)^2 +(y-z)^2+ (z-x)^2>=0 
<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0 
<=>x^2 + y^2 +z^2 - xy -yz -zx >=0 
<=>(x+y+z)^2 >= 3(x+y+z) 
<=>[(x+y+z)^2]/3 >= xy+yz+ zx 
=>xy +yz + zx <=3 
dấu = xảy ra khi x=y=z =1 

=> Max P=3

Bình luận (0)
BY
20 tháng 12 2016 lúc 20:27

x=1:z=1:y=1.tích cho tui nhé!hi!hi!hi!!!!!!!!!!!!!!!

Bình luận (0)
PA
29 tháng 7 2020 lúc 16:49

Mot tam bia hinh chu nhat co chieu rong bang 1/2 chieu dai.Tinh dien h tam bia do , biet rang neu tang ca chieu dai va chieu rong cua no len 3 dm thi dien h tam bia tang them 49,5dm2
Gọi CR là a thì CD là (2 x a ) (dm)
Khi tăng cả chiều dài và chiều rộng lên 3dm thì:
chiều dài : (2xa ) + 3 (dm)
chiều rộng : a +3 (dm)
Vì diện tích tăng thêm 49.5 dm2 nên :
{ [(2xa) + 3 ]x (a +3 ) } - [(2xa) xa] = 49,5
<=>( 2 x a x a )+ 9xa + 6 - (2 x a x a) = 49,5
<-> 9xa +6 = 49,5
<-> 9 x a = 49,5 - 6 = 43.5
<=> a = 43.5 : 9 = 4.8 (dm)
CD = 4,8 x 2 = 9.6
=> S tấm bìa = 4.8 x 9.6 = 46,08 ( dm2)

Bình luận (0)
 Khách vãng lai đã xóa
BB
Xem chi tiết
LL
28 tháng 9 2021 lúc 20:32

Tham khảo:

Cho 3 số thức x,y,z thỏa mãn \(x\ge1;y\ge4;z\ge9\) tìm giá trị lớn nhất của biết thức Q=\(\dfrac{yz\sqrt{x-1}+zx\sqrt... - Hoc24

Bình luận (0)
NT
Xem chi tiết
DH
Xem chi tiết
TL
28 tháng 12 2014 lúc 9:38

Áp dụng BĐT Cô - si cho 2 số \(\frac{xy}{z};\frac{yz}{x}\)dương ta có: \(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}.\frac{yz}{x}}=2\sqrt{y^2}=2y\)(1)

Tương tự. \(\frac{yz}{x}+\frac{zx}{y}\ge2\sqrt{\frac{yz}{x}.\frac{zx}{y}}=2\sqrt{z^2}=2z\) (2);

\(\frac{xy}{z}+\frac{zx}{y}\ge2\sqrt{\frac{xy}{z}.\frac{zx}{y}}=2\sqrt{x^2}=2x\)(3)

Cộng từng vế của (1)(2)(3) ta được \(2.\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)\ge2\left(x+y+z\right)=2\Rightarrow P\ge1\)

Vậy Min P = 1 tại x= y = z = 1/3

Bình luận (0)
ND
Xem chi tiết
LD
Xem chi tiết
LD
13 tháng 5 2017 lúc 16:53

\(xy+yz+zx-xyz=1-x-y-z+xy+yz+zx-xyz\)

\(=\left(1-x\right)-y\left(1-x\right)-z\left(1-x\right)+yz\left(1-x\right)\)

\(=\left(1-x\right)\left(1-y-z+yz\right)=\left(1-x\right)\left(1-y\right)\left(1-z\right)\)

\(xy+yz+zx+xyz+2=1+x+y+z+xy+yz+zx+xyz\)

\(=\left(1+x\right)+y\left(1+x\right)+z\left(1+x\right)+yz\left(1+x\right)\)

\(=\left(1+x\right)\left(1+y\right)\left(1+z\right)\)

\(1+x+y+z=1+1\Rightarrow1+x=\left(1-y\right)+\left(1-z\right)\ge2\sqrt{\left(1-y\right)\left(1-z\right)}\)

Tương tự ta cũng có: \(1+y\ge2\sqrt{\left(1-z\right)\left(1-x\right)}\)

\(1+z\ge2\sqrt{\left(1-x\right)\left(1-y\right)}\)

Vậy \(S\le\frac{\left(1-x\right)\left(1-y\right)\left(1-z\right)}{8\left(1-x\right)\left(1-y\right)\left(1-z\right)}=\frac{1}{8}\)

Bình luận (0)
BH
Xem chi tiết
H24
29 tháng 9 2019 lúc 9:18

Theo em bài này chỉ có min thôi nhé!

Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)

Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0

Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

(chuyển vế qua dùng hằng đẳng thức là xong liền hà)

Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)

Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)

Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)

Vậy...

P/s: Ko chắc nha!

Bình luận (0)
BH
30 tháng 9 2019 lúc 9:59

dit me may 

Bình luận (1)
LK
19 tháng 7 2020 lúc 19:01

bạn bui thai hoc sao lại cmt linh tinh vậy :)) bạn ko có học thức à :> mà ý bạn cmt như vậy là sao hả ? 

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
TN
11 tháng 2 2017 lúc 21:45

Câu hỏi của phan tuấn anh - Toán lớp 9 - Học toán với OnlineMath cái này y hệt, tham khảo đi nếu vẫn chưa làm dc thì nhắn cho mk

Bình luận (0)
VD
Xem chi tiết