Tìm x,y nguyên biết 2x2-2xy+x+y+15=0
Thank you
Tìm tất cả các cặp số nguyên dương (x; y) thỏa mãn điều kiện 2x2 - 2xy + x + y + 2 = 0
\(\Leftrightarrow2x^2+x+2=y\left(2x-1\right)\)
\(\Leftrightarrow y=\dfrac{2x^2+x+2}{2x-1}=x+1+\dfrac{3}{2x-1}\)
\(y\in Z\Rightarrow\dfrac{3}{2x-1}\in Z\)
Mà x nguyên dương \(\Rightarrow2x-1>0\)
\(\Rightarrow2x-1=Ư\left(3\right)\Rightarrow x=\left\{1;2\right\}\)
\(\Rightarrow\left(x;y\right)=\left(1;5\right);\left(2;4\right)\)
tìm các số nguyên x,y biết:2x2-2xy=5x-y-19 giup em vs các anh chụy ơi!!!
Ta có \(2x^2-2xy=5x-y-19\Leftrightarrow2x^2-5x+19=2xy-y\)
<=>\(\frac{2x^2-5x+19}{2x-1}=y\)
Mà y là số nguyên =>\(\frac{2x^2-5x+19}{2x-1}\in Z\Leftrightarrow\frac{2x^2-x-4x+2+17}{2x-1}\in Z\)
\(\Leftrightarrow2x-2+\frac{17}{2x-1}\in Z\Leftrightarrow\frac{17}{2x-1}\in Z\Rightarrow17⋮2x-1\)
đến đây lấp bảng nhé !
^_^
\(t\text{a}\)\(co\) \(2x^2-2xy=5x-y-19\Rightarrow2x^2-5x-19=2xy-y\)
\(\Leftrightarrow\frac{2x^2-5x+19}{2x-1}=y\)
Ma y la số nguyên\(\Rightarrow\frac{2x^2-5x-19}{2x-1}\in Z\Leftrightarrow\frac{2x^2-x-4x+2+17}{2x-1}\in Z\)
\(2x-2+\frac{17}{2x-1}\in Z\Leftrightarrow\frac{17}{2X-1}\in Z\Leftrightarrow17⋮2X-1\)
BN TU LaP BaNG NHE
Tìm số nguyên x,y biết \(2x^2-2xy+x-y+15=0\)
\(2x^2-2xy+x-y+15=0\)
\(\Rightarrow\left(2x^2-2xy\right)+\left(x-y\right)+15=0\)
\(\Rightarrow2x\left(x-y\right)+\left(x-y\right)=0-15\)
\(\Rightarrow\left(x-y\right)\left(2x+1\right)=-15\)
Xét 2x + 1 . Ta thấy 2x là số chia hết cho 2 => 2x là số chẵn => 2x+1 là số lẻ
\(\Rightarrow\) 2x+1 = 1 ; x-y =-15 (1) hoặc 2x+1 = 3 ; x-y=-5 (2) hoặc 2x+1=5 ; x-y=-3 (3) hoặc 2x+1 = 15; x-y=-1 (4 ) hoặc 2x+1=-15 ; x-y=1 (5) hoặc 2x+1=-5 ;x-y=3 (6) hoặc 2x+1 = -3 ; x-y=5 (7) hoặc 2x+1=-1 ;x-y=15 (8)
* Từ (1) có: 2x + 1 = 1 => 2x = 0 => x=0 . Thay x = 0 vào x - y = -15 => 0 -y=-15 => y = 0-(-15)=15 [ thỏa mãn ]
* Từ (2) có : 2x + 1 = 3 => 2x=2 => x=1 . Thay x = 1 vào x - y = -5 => 1 - y = -5 => y = 1-(-5) = 6 [ thỏa mãn]
....Làm tiếp nhé, nhớ nha everyone!
* Từ (3) có : 2x+1 = 5
\(2x^2-2xy+x-y+15=0\)
=>\(x.\left(2x-x+x\right)-y-y=-15\)
=>\(3x+2y=-15\)
Mà không có x,y nào thỏa mãn điều kiện trên nên không có sống nguyên x,y nào mà \(2x^2-2xy+x-y+15=0\)
Tìm số nguyên x;y thỏa mãn:
2xy - 4 + 4x - y = 0
Đang cần gấp ai trả lời đầu tiên được mình tick
Thank you
2xy -4 +4x -y = 0 <=> (2xy + 4x ) - (2+y) = 2
<=> 2x(y+2) - (y+2) = 2 <=> (y+2)(x-1) = 2 (1)
Có x; y nguyên => y+2 nguyên; 2x-1 là số nguyên lẻ
Từ (1) => \(\hept{\begin{cases}y+2\inƯ\left(2\right)\\2x-1\inƯ\left(2\right)\end{cases}\Rightarrow y+2;2x-1\in\left\{1;2;-1;-2\right\}}\)
Mà (y+2)(2x-1) = 2 ; 2x-1 là số nguyên lẻ nên có 2 trường hợp xảy ra :
TH1 \(\hept{\begin{cases}y+2=2\\2x-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}}\)( Thỏa mãn điều kiện x;y nguyên)
TH2 \(\hept{\begin{cases}y+2=-2\\2x-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}y=-4\\x=0\end{cases}}}\)(thỏa mãn điều kiện x;y nguyên)
Vậy \(x;y\in\left\{\left(1;0\right);\left(0;-4\right)\right\}\)
......Tích cho mk nhoa !!!!!............
Ta có: 2xy -4 + 4x - y = 0
x(2y+4) - y = 4
2x(2y+4) - 2y - 4 = 4
(2y+4)(2x - 1) = 4
Suy ra 2y+4 và 2x-1 là ước của 4
Các ước của 4 là 1;-1;2;-2;4;-4
Ta có bảng sau:
2y+4 | -2 | 2 | 1 | 4 | -1 | -4 |
2x-1 | -2 | 2 | 4 | 1 | -4 | -1 |
y | -3 | -1 | -3/2(loại) | 0 | 3/2(loại) | 0 |
x | -1/2 (loại) | 3/2 loại | 2 | 0 |
Vậy x=2 thì y = 0
x = 0 thì y = 0
Tìm x,y thoả mãn: y2+2xy-12x+4(x+y)+2x2+40=0
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+4\left(x+y\right)+4+\left(x^2-12x+36\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+4\left(x+y\right)+4+\left(x-6\right)^2=0\)
\(\Leftrightarrow\left(x+y+2\right)^2+\left(x-6\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\x+y+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=-8\end{matrix}\right.\)
\(y^2+2xy-12x+4\left(x+y\right)+2x^2+40=0\\ \Leftrightarrow\left[\left(x^2+2xy+y^2\right)+4\left(x+y\right)+4\right]+\left(x^2-12x+36\right)=0\\ \Leftrightarrow\left(x+y+2\right)^2+\left(x-6\right)^2=0\)
Vì \(\left\{{}\begin{matrix}\left(x+y+2\right)^2\ge0\forall x,y\\\left(x-6\right)^2\ge0\forall x\end{matrix}\right.\)
Nên \(\left(x+y+2\right)^2+\left(x-6\right)^2\ge0\forall x,y\)
Dấu"=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x+y+2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-8\\x=6\end{matrix}\right.\)
Vậy x = 6 và y = -8
tìm cặp số nguyên (x;y) thỏa mãn: 2x2+y2+2xy-6x-2y=8
Lời giải:
$2x^2+y^2+2xy-6x-2y=8$
$\Leftrightarrow (x^2+y^2+2xy)+x^2-6x-2y=8$
$\Leftrightarrow (x+y)^2-2(x+y)+x^2-4x=8$
$\Leftrightarrow (x+y)^2-2(x+y)+1+(x^2-4x+4)=13$
$\Leftrightarrow (x+y-1)^2+(x-2)^2=13$
$\Rightarrow (x-2)^2=13-(x+y-1)^2\leq 13$
Mà $(x-2)^2$ là scp với mọi $x$ nguyên nên $(x-2)^2\in\left\{0; 1; 4; 9\right\}$
Nếu $(x-2)^2=0\Rightarrow (x+y-1)^2=13-(x-2)^2=13$ (không là scp - loại)
Nếu $(x-2)^2=1\Rightarrow (x+y-1)^2=12$ (không là scp - loại)
Nếu $(x-2)^2=4\Rightarrow (x+y-1)^2=9$
$\Rightarrow x-2=\pm 2$ và $x+y-1=\pm 3$
TH1: $x-2=2; x+y-1=3\Rightarrow x=4; y=0$
TH2: $x-2=2; x+y-1=-3\Rightarrow x=4; y=-6$
TH3: $x-2=-2; x+y-1=3\Rightarrow x=0; y=4$
TH4: $x-2=-2; x+y-1=-3\Rightarrow x=0; y=-2$
Nếu $(x-2)^=9\Rightarrow (x+y-1)^2=4$ (bạn cũng làm tương tự trên)
x-2xy+y=0. Tìm x,y biết x,y là số nguyên
tìm số nguyên x,y biết:2xy-x-y=0
Tìm x, y nguyên dương thỏa mãn x2−2xy+2x2−2xy+2 là số nguyên