Những câu hỏi liên quan
MT
Xem chi tiết
H24
Xem chi tiết
TN
4 tháng 5 2018 lúc 17:31

ĐK: \(x\ge-\frac{1}{2}\)

\(pt\Leftrightarrow\sqrt{x+5}-\sqrt{2x+1}+9-\sqrt{\left(x+5\right)\left(2x+1\right)}=0\)

Đến đây đặt ẩn hay liên hợp hay j thì tùy

Bình luận (0)
WM
17 tháng 2 2020 lúc 10:15

ng khác đã giải ra rồi sao lại k sai là sao bọn này bị ngu à

Bình luận (0)
 Khách vãng lai đã xóa
UI
Xem chi tiết
LH
17 tháng 5 2021 lúc 21:03

b, \(đk:x\ge2\)

Xét x=2 thay vào pt thấy không thỏa mãn => x>2 hay 27x-54>0

 \(x^3-11x+36x-18=4\sqrt[4]{27x-54}\)

\(\Leftrightarrow27x^3-297x^2+972x-486=4\sqrt[4]{\left(27x-54\right).81.81.81}\le189+27x\) (cosi với 4 số dương, dấu = xảy ra khi x=5)

\(\Leftrightarrow x^3-11x^2+35x-25\le0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)^2\le0\)  (*)

\(\left\{{}\begin{matrix}x>2\\\left(x-5\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1>0\\\left(x-5\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow\left(x-1\right)\left(x-5\right)^2\ge0\) (2*)

Từ (*) và (2*) ,dấu = xra khi x=5 (thỏa mãn)
Vây pt có nghiệm duy nhất x=5

 

 

 

 

 

 

Bình luận (1)
LH
17 tháng 5 2021 lúc 21:27

c,Có \(6\sqrt[3]{4x^3+x}=16x^4+5>0\)

\(\Leftrightarrow4x^3+x>0\)

Có: \(16x^4+5=6\sqrt[3]{4x^3+x}\le2\left(4x^3+x+2\right)\) (theo cosi với 3 số dương,dấu = xảy ra khi \(x=\dfrac{1}{2}\))

\(\Leftrightarrow16x^4-8x^3-2x+1\le0\)

\(\Leftrightarrow\left(2x-1\right)^2\left(4x^2+2x+1\right)\le0\) (*)
(tương tự câu b) Dấu = xảy ra khi \(x=\dfrac{1}{2}\)(thỏa mãn)
Vậy....

d) Đk: \(x\ge\dfrac{3}{4}\)

Áp dụng bđt cosi:

 \(\sqrt{2x-1}\le\dfrac{2x-1+1}{2}=x\)

 \(\Rightarrow\dfrac{1}{\sqrt{2x-1}}\ge\dfrac{1}{x}\) (*)

\(\sqrt[4]{4x-3}\le\dfrac{4x-3+1+1+1}{4}=x\)

\(\dfrac{\Rightarrow1}{\sqrt[4]{4x-3}}\ge\dfrac{1}{x}\) (2*)

Từ (*) và (2*) \(\Rightarrow\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}\ge\dfrac{2}{x}\)

Dấu = xảy ra khi x=1 (tm)

 

 

 


 

Bình luận (0)
H24
17 tháng 5 2021 lúc 20:19

`a)\sqrtx+\sqrt{2-x}=(3x^2-2x+3)/(x^2+1)`

`đk:0<=x<=2`

`pt<=>sqrtx-1+\sqrt{2-x}-1=(3x^2-2x+3)/(x^2+1)-2`

`<=>(x-1)/(sqrtx+1)+(1-x)/(sqrt{2-x}+1)=(x^2-2x+1)/(x^2+1)`

`<=>(x-1)/(sqrtx+1)+(1-x)/(sqrt{2-x}+1)=(x-1)^2/(x^2+1)`

`<=>(x-1)((x-1)/(x^2+1)+1/(sqrt{2-x}+1)-1/(sqrtx+1))=0`

`<=>x-1=0<=>x=1`

Vậy `S={1}`

Bình luận (0)
MT
Xem chi tiết
NL
20 tháng 7 2021 lúc 13:26

c.

ĐKXĐ: \(\left[{}\begin{matrix}x>1\\x< -2\end{matrix}\right.\)

\(\Leftrightarrow x+4-2\sqrt[]{\left(\dfrac{x+2}{x-1}\right)^2\left(\dfrac{x-1}{x+2}\right)}=0\)

\(\Leftrightarrow x+4-2\sqrt[]{\dfrac{x+2}{x-1}}=0\)

\(\Leftrightarrow x+4=2\sqrt[]{\dfrac{x+2}{x-1}}\) (\(x\ge-4\))

\(\Leftrightarrow x^2+8x+16=\dfrac{4\left(x+2\right)}{x-1}\)

\(\Rightarrow x^3+7x^2+4x-24=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+4x-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2+2\sqrt{3}\\x=-2-2\sqrt{3}\left(loại\right)\end{matrix}\right.\)

Bình luận (0)
NL
20 tháng 7 2021 lúc 13:16

a.

\(\Leftrightarrow2x^2-11x+21=3\sqrt[3]{4\left(x-1\right)}\)

Do \(2x^2-11x+21=2\left(x-\dfrac{11}{4}\right)^2+\dfrac{47}{8}>0\Rightarrow3\sqrt[3]{4\left(x-1\right)}>0\Rightarrow x-1>0\)

Ta có:

\(VT=2x^2-11x+21-3\sqrt[3]{4x-4}=2\left(x^2-6x+9\right)+x+3-3\sqrt[3]{4\left(x-1\right)}\)

\(=2\left(x-3\right)^2+x+3-3\sqrt[3]{4\left(x-1\right)}\)

\(\Rightarrow VT\ge x+3-3\sqrt[3]{4\left(x-1\right)}=\left(x-1\right)+2+2-3\sqrt[3]{4\left(x-1\right)}\)

\(\Rightarrow VT\ge3\sqrt[3]{\left(x-1\right).2.2}-3\sqrt[3]{4\left(x-1\right)}=0\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\x-1=2\\\end{matrix}\right.\) \(\Leftrightarrow x=3\)

Vậy pt có nghiệm duy nhất \(x=3\)

Bình luận (0)
NL
20 tháng 7 2021 lúc 13:21

b.

ĐKXD: \(x\ge-1\)

Phương trình: \(2\left(x+1\right)-\left(3x-2\right)\sqrt[]{x+1}+x^2-x=0\)

Đặt \(\sqrt[]{x+1}=t\ge0\)

\(\Rightarrow2t^2-\left(3x-2\right)t+x^2-x=0\)

\(\Delta=\left(3x-2\right)^2-8\left(x^2-x\right)=\left(x-2\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{3x-2+x-2}{4}=x-1\\t=\dfrac{3x-2-x+2}{4}=\dfrac{x}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt[]{x+1}=x-1\left(x\ge1\right)\\\sqrt[]{x+1}=\dfrac{x}{2}\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=x^2-2x+1\left(x\ge1\right)\\x+1=\dfrac{x^2}{4}\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2+2\sqrt[]{2}\end{matrix}\right.\)

Bình luận (0)
NN
Xem chi tiết
NM
15 tháng 9 2021 lúc 14:16

\(1,\sqrt{x+2+4\sqrt{x-2}}=5\left(x\ge2\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-2}+4\right)^2}=5\\ \Leftrightarrow\sqrt{x-2}+4=5\\ \Leftrightarrow\sqrt{x-2}=1\\ \Leftrightarrow x-2=1\Leftrightarrow x=3\\ 2,\sqrt{x+3+4\sqrt{x-1}}=2\left(x\ge1\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}+4\right)^2}=2\\ \Leftrightarrow\sqrt{x-1}+4=2\\ \Leftrightarrow\sqrt{x-1}=-2\\ \Leftrightarrow x\in\varnothing\left(\sqrt{x-1}\ge0\right)\)

\(3,\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\left(x\ge\dfrac{1}{2};x\ne1\right)\\ \Leftrightarrow x+\sqrt{2x-1}=2\\ \Leftrightarrow x-2=-\sqrt{2x-1}\\ \Leftrightarrow x^2-4x+4=2x-1\\ \Leftrightarrow x^2-6x+5=0\\ \Leftrightarrow\left(x-5\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=1\left(loại\right)\end{matrix}\right.\)

\(4,\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}=6\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}=6\\ \Leftrightarrow\sqrt{2x-5}+1=6\\ \Leftrightarrow\sqrt{2x-5}=5\\ \Leftrightarrow2x-5=25\Leftrightarrow x=15\left(TM\right)\)

Bình luận (0)
TN
Xem chi tiết
HP
16 tháng 10 2021 lúc 21:40

a. \(\sqrt[3]{1-2x}+3=0\left(ĐK:x\le\dfrac{1}{2}\right)\)

<=> \(\sqrt[3]{1-2x}=-3\)

<=> \(1-2x=\left(-3\right)^3\)

<=> \(1-2x=-27\)

<=> \(-2x=-28\)

<=> \(x=14\left(TM\right)\)

Bình luận (0)
NA
Xem chi tiết
CC
Xem chi tiết
MT
Xem chi tiết
NL
20 tháng 7 2021 lúc 16:49

a.

ĐKXĐ: \(x\ge0\)

\(\sqrt{2x^2+13x+5}-5\sqrt{x}+\sqrt{2x^2-3x+5}-3\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2-12x+5}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{2x^2-12x+5}{\sqrt{2x^2-3x+5}+3\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-12x+5\right)\left(\dfrac{1}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-3x+5}+3\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-12x+5=0\)

\(\Leftrightarrow...\)

Bình luận (0)
NL
20 tháng 7 2021 lúc 16:49

b.

ĐKXĐ: \(x^2\ge\dfrac{4}{3}\)

\(\sqrt{x^2-\dfrac{4}{3}}+\sqrt{4x^2-4}-x=0\)

\(\Leftrightarrow\sqrt{\dfrac{3x^2-4}{3}}+\dfrac{3x^2-4}{\sqrt{4x^2-4}+x}=0\)

\(\Leftrightarrow\sqrt{3x^2-4}\left(\dfrac{1}{\sqrt{3}}+\dfrac{\sqrt{3x^2-4}}{\sqrt{4x^2-4}+x}\right)=0\)

\(\Leftrightarrow3x^2-4=0\)

\(\Leftrightarrow...\)

Bình luận (0)