cho x,y >0 và x+y =1
chứng minh rằng \(\frac{1}{xy}+\frac{2}{x^2+y^2}\ge8\)
Cho x,y>0 và x+y=1,chứng minh: \(\frac{1}{xy}+\frac{2}{x^2+y^2}\ge8\)
cho x,y>0 thõa mãn x+y=2 . Chứng minh rằng :
\(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge8\)
Áp dụng bđt AM-GM ta có:
\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^2\ge4\)
CMTT \(\left(y+\frac{1}{y}\right)^2\ge4\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge4\left(dpcm\right)\)
Dấu"="xảy ra \(\Leftrightarrow x=y=1\)
bđt AM-GM là j ?
๛Ŧɦượйǥ❖Ŧą๓❖Ąкąʑąツ
có thể gọi là Cô si đó
Câu 1: Cho x,y là các số thực dương thõa mãn xy=1. Chứng minh rằng: \(\left(x+y+1\right)\left(x^2+y^2\right)+\frac{4}{x+y}\ge8\)
Câu hỏi của Tuấn Anh Nguyễn - Toán lớp 9 - Học toán với OnlineMath
Tham khảo bài giải nhé !
CHúc bạn học tốt
cho xy khác 0 và x+y =1
chứng minh rằng: \(\frac{x}{y^3-1}+\frac{y}{x^3-1}-\frac{2\left(xy-2\right)}{x^2y^2+3}=0\)
Xét \(\frac{x}{y^3-1}+\frac{y}{x^3-1}=\frac{1-y}{y^3-1}+\frac{1-x}{x^3-1}=-\frac{1}{x^2+x+1}-\frac{1}{y^2+y+1}\)
\(=-\frac{x^2+y^2+x+y+2}{\left(x^2+x+1\right)\left(y^2+y+1\right)}=-\frac{x^2+y^2+3}{x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+x+y+1}\)
\(=-\frac{\left(x+y\right)^2-2xy+3}{x^2y^2+x^2+y^2+2xy+2}=-\frac{4-2xy}{x^2y^2+3}=\frac{2\left(xy-2\right)}{x^2y^2+3}\)
từ đó ta có đpcm
B1
Cho x,y>0 và xy=1. Chứng minh (x+y+1)(\(x^2+y^2\))+\(\frac{4}{x+y}\ge8\)
B2 Cho x,y,z>0 và xyz=1. CMR
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{3}{x+y+z}\ge4\)
B3 Cho a là số dương . CMR \(\frac{a^2}{4}+\frac{9}{a+1}\ge4\)
Bài 1:
Theo BĐT AM-GM có :$(x+y+1)(x^2+y^2)+\dfrac{4}{x+y}\geq (x+y+1).2xy+\dfrac{4}{x+y}=2(x+y+1)+\dfrac{4}{x+y}=(x+y)+(x+y)+\dfrac{4}{x+y}+2\geq 2\sqrt{xy}+2\sqrt{(x+y).\dfrac{4}{x+y}}+2=2+4+2=8$(đpcm)
Dấu \(=\) xảy ra khi \(x=y, xy=1\) và \(x+y=2\) hay \(x=y=1\)
Bài 1:
Áp dụng BĐT Cô-si cho các số dương:
\(x^2+y^2\geq 2xy=2\Rightarrow (x+y+1)(x^2+y^2)+\frac{4}{x+y}\geq 2(x+y+1)+\frac{4}{x+y}(1)\)
Tiếp tục áp dụng BĐT Cô-si:
\(2(x+y+1)+\frac{4}{x+y}=(x+y+2)+[(x+y)+\frac{4}{x+y}]\)
\(\geq (2\sqrt{xy}+2)+2\sqrt{(x+y).\frac{4}{x+y}}=(2+2)+4=8(2)\)
Từ \((1);(2)\Rightarrow (x+y+1)(x^2+y^2)+\frac{4}{x+y}\geq 8\) (đpcm)
Dấu "=" xảy ra khi $x=y=1$
Bài 2:
Vì $xyz=1$ nên:
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{3}{x+y+z}=\frac{z+x+y}{xyz}+\frac{3}{x+y+z}=x+y+z+\frac{3}{x+y+z}\)
Áp dụng BĐT Cô-si cho các số dương:
\(\frac{x+y+z}{3}+\frac{3}{x+y+z}\geq 2(1)\)
\(\frac{2}{3}(x+y+z)\geq \frac{2}{3}.3\sqrt[3]{xyz}=\frac{2}{3}.3=2(2)\)
Từ \((1);(2)\Rightarrow \frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{3}{x+y+z}\geq 2+2=4\)
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=1$
Cho x+y=1 và xy khác 0. Chứng minh rằng:
\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)
cho x;y là 2 số thực thảo mãn x>y và xy=1 . chứng minh \(\frac{\left(x^2+y^2\right)^2}{\left(x-y\right)^2}\ge8\)
Chào ng đẹp
http://olm.vn/hoi-dap/question/119593.html
1) Cho x>y và xy=1. Chứng minh rằng \(\frac{\left(x^2+y^2\right)^2}{\left(x-y\right)^2}\ge8\)
2) Cho xy>1 Chứng minh rằng \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{1}{1+xy}\)
1) Biến đồi tương đương:
\(\left(x^2+y^2\right)^2\ge8\left(x-y\right)^2\)
\(\Leftrightarrow\left(x^2+y^2\right)^2\ge8xy\left(x-y\right)^2\)
\(\Leftrightarrow\left(x^2-4xy+y^2\right)^2\ge0\)(đúng)
2) Sửa đề: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\left(\text{với }xy\ge1\right)\)
\(\Leftrightarrow\frac{\left(x-y\right)^2\left(xy-1\right)}{\left(x^2+1\right)\left(y^2+1\right)\left(xy+1\right)}\ge0\) (đúng)
t ko xét dấu đẳng thức đâu, xấu lắm (ở bài 1), nên you tự xét:D
cho x, y là các số thực thỏa mãn x khác y , xy=1. chứng minh \(\frac{\left(x^2+y^2\right)^2}{\left(x-y\right)^2}\ge8\)