Cho \(a+b+c=1\) CMR: \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho \(a,b,c>0\) và \(a+b+c=1\) CMR \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\)
Áp dụng bất đẳng thức \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) với \(x=a^2+2bc;y=b^2+2ac;z=c^2+2ab\)
Ta có : \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=\frac{9}{\left(a+b+c\right)^2}\)
\(\Rightarrow\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\)( Vì a + b + c = 1)
Cho a,b,c lớn hơn 0 và\(a+b+c\le1\)
CM; \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\)
Theo bất đẳng thức Cauchy-Schwartz ta có
\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{a^2+2bc+b^2+2ca+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9.\)
Cho a, b, c > 0 và a + b + c \(\le\)1. Chứng minh rằng:
\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\)
Cho a,b,c khác nhau đôi một và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Rút gọn
a) \(A=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
b) \(B=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
c) \(C=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
cho a,b,c >0 và a+b+c > 1
CMR \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\le-9\)
Cho a,b,c khác nhau đôi một và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\). Rút gọn các biểu thức sau:
a)\(M=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
b)\(N=\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
c)\(P=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
khó quá xin lỗi nha em mới hok lớp 7
Câu này lớp 7 tớ có làm. Cũng như cái mà gọi là áp dụng t/c dãy tỉ số bằng nhau và tỉ lệ thức. mình tính ra dc a, b. c rồi.
cho a,b,c>0 và \(a+b+c\le1\)
cmr \(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\ge9\)
Cho a ,b ,c khác nhau đôi một và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) . Rút gọn các biểu thức sau :
A=\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
B=\(\frac{bc+1}{a^2+2bc}+\frac{ca+1}{b^2+2ac}+\frac{ab+1}{c^2+2ab}\)
C=\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
D=\(\frac{a^2+bc}{a^2+2bc}+\frac{b^2+ca}{b^2+2ca}+\frac{c^2+ab}{c^2+2ab}\)
P/S : Sẵn tiện mọi người cho mình hỏi " Đều khác nhau đôi một " là sao ạ ? Mình đọc không hiểu rõ đề cho lắm
a,b,c khác nhau đôi một nghĩa là từng cặp số khác nhau ,là:
+a khác b
+b khác c
+c khác a
\(A=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0\)
Suy ra: \(ab==-\left(bc+ac\right)=-bc-ac\)
\(bc=-\left(ab+ac\right)=-ab-ac\)
\(ac=-\left(ab+bc\right)=-ab-bc\)
Nên \(a^2+2ab=a^2+bc+bc=a^2+bc+\left(-ab-ac\right)=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)
Tương tự,ta cũng có: \(b^2+2ac=\left(b-a\right)\left(b-c\right)\)
\(c^2+2ab=\left(c-a\right)\left(c-b\right)\)
Vậy \(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}=\frac{b-c+c-a+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)
những câu còn lại tương tự,bn tự làm nhé
ta có 1/a+1/b+1/c=0
=>bc+ac+ab/abc+0
=>bc+ac+ab=0
=>bc=-ac-ab
ac=-bc-ab
ab=-bc-ac
A=1/(a^2+bc-ac-ab)+1/(b^2+ac-bc-ab)+1/(c^2+ab-bc-ac)
=1/c(a-c)-b(a-c)+1/b(b-c)-a(b-c)+1/c(c-b)-a(c-b)
=1/(a-b)(a-c)+1/(b-a)(b-c)+1/(a-c)(c-b)
=b-c-a+c+a-b/(a-c)(a-b)(b-c)=0
('/': dấu gạch ngang ở giữa phân số)
Với \(a+b+c\le1\) và a, b, c >0
CMR:\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ba}\ge9\)
ĐK:\(a+b+c\le1|a,b,c>0\)
Chỉ có TH \(a=b=c=\frac{1}{3}\)\(\Rightarrow TH:a+b+c=1\)
\(\Rightarrow\frac{1}{\left(\frac{1}{3}\right)^2+2.\frac{1}{3}.\frac{1}{3}}+\frac{1}{\left(\frac{1}{3}\right)^2+2.\frac{1}{3}.\frac{1}{3}}+\frac{1}{\left(\frac{1}{3}\right)^2+2.\frac{1}{3}.\frac{1}{3}}\ge9\)\(=\frac{1}{\left(\frac{1}{3}\right)^2+2\left(\frac{1}{3}\right)^2}3\ge9\)\(=\frac{1}{\left(\frac{1}{3}\right)^2\left(2+1\right)}3\ge9\)\(=\frac{1}{\left(\frac{1}{3}\right)^2.3}3\ge9\)\(=\frac{1}{\frac{1}{3}.\frac{1}{3}.3}3\ge9\)\(=\frac{1}{\frac{1}{3}}3\ge9\)\(=\frac{3}{\frac{1}{3}}\ge9\)\(=3:1:3\ge9\)\(=1\ge9\)( loại )
Vậy không thể CMR \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ba}\ge9\).
Áp dụng bất đẳng thức Cauchy - Schwarz ta có:
\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)
\(=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1^2}=9\)
Dấu "=" xảy ra khi: a = b = c = 1/3