a)1/5x6+1/6x7+1/7x8+...1/49x50
b)2/1x3+2/3x5+2/5x7+...+2/99x101
Bài 1 Tính
a) A=1/2x3+1/3x4+1/4x5+1/5x6+...+1/99x100
b) B=2/3x5+2/5x7+2/7x9+...+2/99x101
c) C=3/3x5+3/5x7+3/7x9+...+3/99x101
d) D=4/3x8+4/8x13+4/13x8+...+4/53x58
Các bạn làm hộ giúp mình với cho mình lời giải
B=2/3x5 + 2/5x7 + 2/7x9 + ...+2/99x101
B= 1/3 - 1/5 + 1/5 - 1/7 + 1/7 -1/9 + ... + 1/99 - 1/101
B= 1/3 - 1/101
B=98/303
( k mk nhé ! Cách làm câu a và b của mk đều đúng 100% đấy ! Dạng này mk học từ lâu rồi ! )
a, A = 1/2x3+ 1/ 3x4 + 1/4x5 + 1/5x6 + ... + 1/99x100
A= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 -1/5 + 1/5 - 1/6 + ... + 1/99 -1/100
A= 1/2 -1/100
A= 49 / 100
nhờ bạn giải dùm mình câu c,d
chứng tỏ rằng :2/1x3+2/3x5+2/5x7+...+2/99x101<1
MIK ĐANG CẦN ĐÁP ÁN GẤP
Ta có:
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}< 1\)
Vậy \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}< 1\)
Đặt biểu thức là A
Ta có A = (3-1)1x3 + (5-3)/3x5+..........+(101-99)/101x99
=3/1x3 - 1/1*3 + 5/3x5 - 3/3x5 + ...........+ 101/99x101 - 99/101x99
= 1- 1/3 +1/3 -1/5 +............+ 1/99 - 1/101
= 1 -1/101 < 1 (Điều phải chứng minh)
help me !!!
bài 15
a) 2/1x3 + 2/3x5 + 2/5.7+......+2/99x101
b) 5/1x3 + 5/3x5 + 5/5x7+......+5/99x101
bài 16
chứng tỏ rằng phân số 2n+1/3n+1 là phân số tối giản
bạn nào làm đc đầu tiên mk tick nha
a)\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
= \(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
= \(1-\dfrac{1}{101}\)
=\(\dfrac{100}{101}\)
\(\dfrac{5}{1.3}+\dfrac{5}{3.5}+\dfrac{5}{5.7}+...+\dfrac{5}{99.101}\)
=\(\dfrac{5}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99+101}\right)\)
=\(\dfrac{5}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
=\(\dfrac{5}{2}.\left(1-\dfrac{1}{101}\right)\)
= \(\dfrac{5}{2}-\dfrac{100}{101}\)
= \(\dfrac{305}{202}\)
Bài 16:
A = \(\dfrac{2n+1}{3n+1}\); đkxđ n \(\ne\) - \(\dfrac{1}{3}\)
Gọi ước chung lớn nhất của 2n + 1 là d
Ta có: 2n + 1 ⋮ d; 3n + 1 ⋮ d
2n + 1 ⋮ d ⇒ 3.(2n + 1) ⋮ d ⇒ 6n + 3 ⋮ d
3n + 1 ⋮ d ⇒ 2.( 3n+ 1) ⋮ d ⇒ 6n + 2 ⋮ d
⇒ 6n + 3 - (6n + 2) ⋮ d ⇒ 6n + 3 - 6n - 2⋮ d
⇒ 1 ⋮ d ⇒ d = 1
Ước chung lớn nhất của 2n + 1 và 3n + 1 là 1
Hay 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau (đpcm)
tính nhanh các tổng sau
a, 2/1x3 + 2/3x5 + 2/5x7 + ... + 2/99x101
\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+...+\dfrac{2}{99\times101}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ =1-\dfrac{1}{101}\\ =\dfrac{100}{101}\)
2/1x3+2/3x5+2/5x7+....2/99x101
Ta có : \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
Đặt : \(A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\)
\(A-\frac{2}{1\cdot3}=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\)
\(2A-\frac{2}{1\cdot3}=\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+\frac{2}{7}-...+\frac{2}{99}-\frac{2}{101}\)
\(2A-\frac{2}{3}=\frac{2}{3}-\frac{2}{101}\)
\(2A-\frac{2}{3}=\frac{196}{303}\)
\(A-\frac{2}{3}=\frac{98}{303}\)
\(A=\frac{98}{303}+\frac{2}{3}=\frac{100}{101}\)
\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{99\times101}\)
\(=\frac{3-1}{1\times3}+\frac{5-3}{3\times5}+\frac{7-5}{5\times7}+...+\frac{101-99}{99\times101}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{1}-\frac{1}{101}\)
\(=\frac{100}{101}\)
2/1x3+2/3x5+2/5x7+...+2/99x101
A = 2/1x3 + 2/3x5 + 2/5x7 + ... + 2/99x101
A = 2/1 - 2/101 = 200/101
Kết quả là 200/101 bạn nhé
2/2 + 1x3 / 3x5 + 2/2 + ······ + 5x7 / 97x99 + 2 / 99x101
= 1-1 / 3 + 1 / 3-1 / 5 + 1 / 5-1 / 7 + ... ... + 1 / 97-1 / 99 + 1 / 99-1 / 101
= 1-1 / 101
= 100/101
2\1x3+2\3x5+2\5x7+...+2\99x101
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101
= 2 .( 1/1.3 + 1/3.5 + 1/5.7 + ... + 1/99.101 )
= 2 . ( 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/99 - 1/101 )
= 2 . ( 1 - 1/101 )
= 2 . ( 101/101 - 1/101 )
= 2 . 100/101
= 200/101
Chúc bn hok tốt !!!
1/1x3+1/3X5+1/5X7+1/7X9+…+1/99X101
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{100}{101}\)
\(=\frac{50}{101}\)
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{99\cdot101}\)
\(=2\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{99\cdot101}\right)\)
\(=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{99\cdot101}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{1}-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)
Bài 1 tính nhanh a,1/3x4+1/4x5+1/5x6+.....+1/2018x2019+1/2019x2020 b,2/3x5+2/5x7+2/7x9+.....+2/99x101 c,1/2+1/6+1/12+1/20+1/30+1/42+1/56 huhuhu.....