Những câu hỏi liên quan
ND
Xem chi tiết
HT
Xem chi tiết
ST
16 tháng 7 2017 lúc 10:17

Đặt \(\frac{a}{b}=\frac{b}{d}=k\)

\(\Rightarrow k^2=\frac{a^2}{b^2}=\frac{b^2}{d^2}\)

Áp dụng TCDTSBN ta có:

\(k^2=\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{b^2+d^2}\) (1)

Lại có: \(k^2=k.k=\frac{a}{b}\cdot\frac{b}{d}=\frac{a}{d}\) (2)

Từ (1) và (2) suy ra \(\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\) (đpcm)

Bình luận (0)
HT
16 tháng 7 2017 lúc 10:20

Cảm ơn bạn bạn giải bài tiếp theo ik bài mà mk nvuwaf đăng í tìm 3 số ....

cảm ơn nhìu

Bình luận (0)
ML
6 tháng 8 2019 lúc 16:55

hay, hay đêý

Bình luận (0)
TN
Xem chi tiết
LC
Xem chi tiết
PA
15 tháng 8 2018 lúc 9:05

bạn ơi bạn làm dc chưa

Bình luận (0)
TN
Xem chi tiết
KK
5 tháng 8 2017 lúc 10:03

Có : \(\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}\)

Áp dụng tính chất dãy tỉ số ...... :

\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}\)

\(\Leftrightarrow\dfrac{a^2}{c^2}=\dfrac{a^2+b^2}{c^2+d^2}\)

\(\Leftrightarrow\dfrac{a}{c}.\dfrac{b}{d}=\dfrac{a^2+b^2}{c^2+d^2}\)

Bình luận (0)
PT
5 tháng 8 2017 lúc 10:05

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\left(\dfrac{a}{c}^2\right)=\left(\dfrac{b}{d}\right)^2=\dfrac{ab}{cd}\)

\(\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{ab}{cd}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{ab}{cd}=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}\)

\(\Rightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\left(đpcm\right)\)

Bình luận (0)
H24
Xem chi tiết
LL
Xem chi tiết
NC
29 tháng 11 2018 lúc 17:44

Câu hỏi của Hiền Hòa - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo bài làm ở link này nhé! :)

Bình luận (0)
NV
30 tháng 11 2018 lúc 19:43

em cam on co

Bình luận (0)
BK
Xem chi tiết
AM
1 tháng 7 2015 lúc 21:07

a)Do b,d>0

\(\frac{a}{b}>\frac{c}{d}\Rightarrow\frac{a.d}{b.d}>\frac{c.b}{b.d}\Rightarrow a.d>b.c\)

b)Do b,d>0

=>\(ad>bc\Leftrightarrow\frac{ad}{bd}>\frac{bc}{bd}\Rightarrow\frac{a}{b}>\frac{c}{d}\)

Bình luận (0)
CM
Xem chi tiết
VT
18 tháng 9 2019 lúc 20:39

Câu 2:

Ta có \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}=\frac{a+c}{b+d}.\)

\(\Rightarrow\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\left(đpcm\right).\)

Chúc bạn học tốt!

Bình luận (2)