Tìm x:
2x+8x:12+18y=26
Biết x+y=102
Câu 14: (1điểm) Tìm x, y biết:
a) 8x( x +8) - x = 8
b) y2 - 18y = - 81
\(a,\Leftrightarrow\left(x+8\right)\left(8x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=\dfrac{1}{8}\end{matrix}\right.\\ b,\Leftrightarrow\left(y-9\right)^2=0\Leftrightarrow y=9\)
8X^2 - 6XY( 2X-Y) + 6X= 2Y^3 -6Y^2+ 18Y-14
Y^2 - 6Y + 5 + căn bậc ba (Y+1) (X^2 + 8) = 0
1) \(\hept{\begin{cases}8x^3y^3+27=18y^3\\4x^2y+6x=y^2\end{cases}}\)
2)\(\hept{\begin{cases}x^2y+2x^2+3y=15\\x^4+y^4-2x^2-4y=5\end{cases}}\)
1) ta tìm cách loại bỏ 18y3, vì y=0 không là nghiệm của phương trình (2) tương đương 72x2y2+108xy=18y3
thế 18y3 từ phương trình (1) vào ta được
8x3y3-72x2y2-108xy+27=0
<=> \(xy=\frac{-3}{2}\)hoặc \(xy=\frac{21-9\sqrt{5}}{4}\)hoặc \(xy=\frac{21+9\sqrt{5}}{4}\)
thay vào (1) ta tìm được x,y
=> y=0 (loại) hoặc \(y=\sqrt[3]{\frac{8\left(xy\right)^3+27}{18}}=\pm\frac{3}{2}\left(\sqrt{5}-3\right)\Rightarrow x=\frac{1}{4}\left(3\pm\sqrt{5}\right)\)
vậy hệ đã cho có nghiệm
\(\left(x;y\right)=\left(\frac{1}{4}\left(3-\sqrt{5}\right);-\frac{3}{2}\left(\sqrt{5}-3\right)\right);\left(\frac{1}{4}\left(3+\sqrt{5}\right);\frac{-3}{2}\left(3+\sqrt{5}\right)\right)\)
Cho x,y là số dương thoả mãn \(x+2y\le18\)
Tìm giá trị nhỏ nhất của\(P=\frac{9x+18y}{xy}+\frac{2x-5y}{12}+2018\)
\(P=\frac{9}{y}+\frac{18}{x}+\frac{x}{6}-\frac{5y}{12}+2018=\left(\frac{18}{x}+\frac{x}{2}\right)+\left(\frac{9}{y}+\frac{y}{4}\right)-\frac{x}{3}-\frac{2y}{3}+2018\)
Lập luận : Áp dụng BTĐ Cô si cho : \(\frac{18}{x};\frac{x}{2}>0\)(với x > 0):
\(\frac{18}{x}+\frac{x}{2}\ge2\sqrt{\frac{18}{x}.\frac{x}{2}}\Leftrightarrow\frac{18}{x}+\frac{x}{2}\ge6\)
Lập luận tương tự : Áp dụng BĐT Cô si cho : \(\frac{9}{y};\frac{y}{4}>0\)(y > 0 )
\(\frac{9}{y}+\frac{y}{4}\ge2\sqrt{\frac{9}{y}.\frac{y}{4}}\Leftrightarrow\frac{9}{y}+\frac{y}{4}\ge3\)
Và \(\frac{x}{3}-\frac{2y}{3}=\frac{x+2y}{3}\ge\frac{18}{3}\)(Do x + 2y \(\le\)18)
\(\Rightarrow P=\left(\frac{18}{x}+\frac{x}{2}\right)+\left(\frac{9}{y}+\frac{y}{4}\right)-\frac{x}{3}-\frac{2y}{3}+2018\ge6-3-\frac{18}{3}+2018=2021\)
Vậy \(P=2021\)Khi và chỉ khi \(\hept{\begin{cases}\frac{18}{x}=\frac{x}{2};\frac{9}{y}=\frac{y}{4}\\x+2y< 18;x,y>0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=6\\y=6\end{cases}}\)
Phân tích:
a) 8x^4-8x^2+2-18y^2
b) x^3-x^2-y^3+y^2
c) 9x-6x^2-3
Cho hai số dương x,y thỏa mãn: \(x+2y\le18\)
Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{9x+18y}{xy}+\frac{2x-5y}{12}+2018\)
P=2x+y+30x+5y
=(6x5+30x)+(y5+5y)+(4x5+4y5)
≥2.6+2+45.10=22
Vậy GTNN là P = 22 khi x = y = 5
Ta có: \(P=\frac{9x+18y}{xy}+\frac{2x-5y}{12}+2018\)
\(=\frac{9}{y}+\frac{18}{x}+\frac{x}{6}-\frac{5y}{12}+2018\)
\(=\frac{18}{x}+\frac{x}{2}+\frac{9}{y}+\frac{y}{4}-\frac{x}{3}-\frac{2y}{3}+2018\)
\(=\left(\frac{18}{x}+\frac{x}{2}\right)+\left(\frac{9}{y}+\frac{y}{4}\right)-\frac{x+2y}{3}+2018\)
Vì \(x,y>0\Rightarrow\frac{18}{x}>;\frac{x}{2}>0\)
Áp dụng BĐT cô si cho hai số dương ta có:
\(\frac{18}{x}+\frac{x}{2}\ge2\sqrt{\frac{18}{x}.\frac{x}{2}}=6\)
\(\frac{9}{y}+\frac{y}{4}\ge2\sqrt{\frac{9}{y}.\frac{y}{4}}=3\)
Vì \(x+2y\le18\)
\(\Rightarrow\frac{x+2y}{3}\le\frac{18}{3}=6\)
\(\Rightarrow\frac{-x+2y}{3}\ge-6\)
\(\Rightarrow P\ge6+3-6+2018\)
\(\Rightarrow P\ge2021\)
\(\Rightarrow MinP=2021\Leftrightarrow\hept{\begin{cases}\frac{18}{x}=\frac{x}{2}\\\frac{9}{y}=\frac{y}{4}\\x+2y=18\end{cases}}\)và x,y>0
\(\Leftrightarrow\hept{\begin{cases}x=6\\y=6\end{cases}\Rightarrow x=y=6}\)
cho hai số thực dương thỏa mãn \(\frac{4}{x}+\frac{5}{y}\ge23\). Tìm GTNN của biểu thức B = \(8x+\frac{6}{x}+18y+\frac{7}{y}\)
\(B=\left(8x+\frac{2}{x}\right)+\left(18y+\frac{2}{y}\right)+\left(\frac{4}{x}+\frac{5}{y}\right)\ge2\sqrt{8x.\frac{2}{x}}+2\sqrt{18y.\frac{2}{y}}+23..\)
\(B\ge2.4+2.6+23=43\)
B min = 43 khi \(\hept{\begin{cases}8x=\frac{2}{x}\\18y=\frac{2}{y}\\\frac{4}{x}=\frac{5}{y}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\end{cases}.}}\)
Tìm GTNN của biểu thức sau:
B= (\(x^2\)- 2x)(\(y^2\)+ 6y +12) + \(3y^2\)+18y+2048
8X^2 - 6XY( 2X-Y) + 6X= 2Y^3 -6Y^2+ 18Y-14