Những câu hỏi liên quan
AA
Xem chi tiết
CB
27 tháng 8 2017 lúc 15:48

Xin lỗi

Mình k bt

Mk k bt

Mk k bt

Xin lỗi xin lỗi

Bình luận (0)
CB
27 tháng 8 2017 lúc 15:49

Xin lỗi

Mình k bt

Mk k bt

Mk k bt

Xin lỗi xin lỗi

Bình luận (0)
NT
Xem chi tiết
NQ
Xem chi tiết
H24
27 tháng 7 2018 lúc 5:52

KHÔNG BIẾT

Bình luận (0)
HT
Xem chi tiết
H24
6 tháng 4 2018 lúc 8:42

\(P=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(x-1\right)+\left(x-1\right)}\right]\)  \(:\frac{\sqrt{x}+1-2}{x-1}\)

\(P=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-1\right)}\right]:\frac{\sqrt{x}-1}{x-1}\)

\(P=\left[\frac{1}{\sqrt{x}+1}-\frac{2}{\left(\sqrt{x}+1\right)^2}\right]:\frac{1}{\sqrt{x}+1}\)

\(P=\frac{\sqrt{x}+1-2}{\left(\sqrt{x}+1\right)^2}:\frac{1}{\sqrt{x}+1}\)

\(P=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2}\)

\(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

Bình luận (0)
H24
6 tháng 4 2018 lúc 8:52

\(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

\(\Leftrightarrow P=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}\)

\(\Leftrightarrow P=1-\frac{2}{\sqrt{x}+1}\)

để \(P\in Z\) \(\Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)\)

\(\Leftrightarrow\sqrt{x}+1\in\left\{\pm1;\pm2\right\}\)

+) \(\sqrt{x}+1=-1\Leftrightarrow\sqrt{x}=-2\)  ( vô lí ) 

+) \(\sqrt{x}+1=1\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)

+) \(\sqrt{x}+1=-2\Leftrightarrow\sqrt{x}=-3\)  ( vô lí ) 

+) \(\sqrt{x}+1=2\Leftrightarrow\sqrt{x}=1\)

vậy để \(P\in Z\) thì \(x\in\left\{1;0\right\}\)

Bình luận (0)
TV
Xem chi tiết
TD
13 tháng 11 2017 lúc 21:16

Ta có :

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

để A nguyên thì \(\frac{4}{\sqrt{x}-3}\)nguyên

\(\Rightarrow\)\(⋮\)\(\sqrt{x}-3\)

\(\Rightarrow\)\(\sqrt{x}-3\)\(\in\)Ư ( 4 ) = { 1 ; -1 ; 2 ; -2 ; 4 ; -4 }

Lập bảng ta có :

\(\sqrt{x}-3\)1-12-24-7
\(\sqrt{x}\)42517-4
x16425149\(\varnothing\)

Vậy ...

Bình luận (0)
NC
Xem chi tiết
BM
30 tháng 7 2019 lúc 18:32

\(ĐKXĐ:\)

\(\hept{\begin{cases}x-9\ne0\\\sqrt{x}-2\ne0\\\sqrt{x}+3\ne0;x\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ne9\\x\ne4\\x\ge0\end{cases}}\)

Vậy...................................................

Bình luận (0)
BM
30 tháng 7 2019 lúc 18:37

\(A=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)

\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)

\(=\frac{\sqrt{x}-\sqrt{x}-3}{\left(\sqrt{x}+3\right)}:\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{-3}{\sqrt{x}+3}:\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{x-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{-3}{\sqrt{x}+3}:\frac{9-x+x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-3}{\sqrt{x}+3}:\frac{-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-3}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4-x}\)

\(=\frac{3\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

\(=\frac{3}{\left(2+\sqrt{x}\right)}\)

Bình luận (0)
BM
30 tháng 7 2019 lúc 18:41

Đế A<1 \(\Rightarrow\frac{3}{2+\sqrt{x}}< 1\)

\(\Leftrightarrow\frac{3}{2+\sqrt{x}}-1< 0\)

\(\Leftrightarrow\frac{3-2-\sqrt{x}}{2+\sqrt{x}}< 0\)

\(\Leftrightarrow\frac{1-\sqrt{x}}{2+\sqrt{x}}< 0\)

Vì \(2+\sqrt{x}>0\forall x\in R\)

\(\Rightarrow1-\sqrt{x}< 0\)

\(\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)

Kết hợp ĐKXĐ \(\Rightarrow\hept{\begin{cases}x>1\\x\ne4\\x\ne9\end{cases}}\)

Bình luận (0)
NY
Xem chi tiết
TN
Xem chi tiết
CG
Xem chi tiết