Tìm Min P=\(\frac{x^4+2x^2+2}{x^2+1}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm min, max của \(A=\frac{x^4+1}{\left(x^2+1\right)^2}\)
Min:
\(A=\frac{x^4+1+2x^2-2x^2}{x^4+2x^2+1}=1-\frac{2x^2}{\left(x^2+1\right)^2}\)
Nhận xét: \(\frac{2x^2}{\left(x^2+1\right)^2}\ge0\)
=> \(1-\frac{2x^2}{\left(x^2+1\right)^2}\ge1\)
Dấu = <=> x=0
Max:
Đặt x2=a
Đặt x-1=y
Đặt 1/y=z
Câu này nâng cao lắm, chắc mình chưa cần giải đâu.
Ra Min=1/2 <=>x=1
1)Tìm min B= \(\frac{x^2+x+1}{x^2-2x+1}\)
2) Tìm max, min P= \(\frac{x^2-8x+7}{X^2+1}\)
Tìm Min
\(A=x+\frac{x-1}{\sqrt{x^2-2x}}\left(x>2\right)\)
\(B=x\sqrt{x}-6x+13\sqrt{x}+\frac{4}{\sqrt{x}}\)
\(C=\frac{1-4\sqrt{x}}{2x+1}-\frac{2x}{x^2+1}\)
a) Tìm min \(P=2x^2-8x+1\)
b) Tìm max \(Q=-5x^2-4x+1\)
c) Tìm min \(K=x\left(x-3\right)\left(x-4\right)\left(x-7\right)\)
d) Tìm min \(R=\frac{3x^2-8x+6}{x^2-2x+1}\)
Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)
Vì \(2\left(x-2\right)^2\ge0\forall x\)
Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)
Vậy \(P_{min}=-7\) khi x = 2
tìm min,max của M = 2016+ xy biết \(2x^2+\frac{1}{x^2}+\frac{4}{y^2}=4\)
Ý tưởng: Đặt \(xy=\frac{1}{k}\) hay \(y=\frac{1}{kx}\).
Ta có \(2x^2+\frac{1}{x^2}+\frac{4}{y^2}=4\Rightarrow2x^2+\frac{1}{x^2}+4k^2x^2=4\)
Suy ra \(\left(4k^2+2\right)x^4-4x^2+1=0\)
Đặt \(X=x^2\). Giả thiết trở thành \(\left(4k^2+2\right)X^2-4X+1=0\) (1), trong đó \(X\) dương.
Do \(X\) tồn tại (theo đề bài) nên có thể coi (1) là phương trình tham số \(k\), và phải có nghiệm dương.
\(\Delta'=2^2-\left(4k^2+2\right)=2-4k^2\)
Nhận xét: Nếu (1) có 2 nghiệm (tính cả nghiệm kép) thì tổng và tích của chúng đều dương nên 2 nghiệm là dương.
Vậy chỉ cần \(\Delta'\ge0\), tức là \(-\sqrt{2}\le\frac{1}{k}\le\sqrt{2}\)
Vậy min\(M=2016-\sqrt{2}\)(đẳng thức xảy ra tại \(x=-\frac{1}{\sqrt{2}},y=2\),
max\(M=2016+\sqrt{2}\) (đẳng thức xảy ra tại \(x=-\frac{1}{\sqrt{2}},y=-2\)
M = \(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}+\frac{2x-2\sqrt{x}}{\sqrt{x}-1}\)
A, RG
B, TÌM x để M =0,M=4
C, tìm min M
với đk 0 ≤ x # 1, biểu thức đã cho xác định
P = (x+2)/(x√x-1) + (√x+1)/(x+√x+1) - (√x+1)/(x-1)
P = (x+2)/ (√x-1)(x+√x+1) + (√x+1)/ (x+√x+1) - 1/(√x-1) {hđt: x-1 = (√x-1)(√x+1)}
P = [(x+2) + (√x+1)(√x-1) - (x+√x+1)] / (x√x-1)
P = (x-√x)/(x√x-1) = (√x-1)√x /(√x-1)(x+√x+1)
P = √x / (x+√x+1)
- - -
ta xem ở trên là biểu thức rút gọn của P, để chứng minh P < 1/3 ta biến đổi tiếp:
P = 1/ (√x + 1 + 1/√x)
bđt côsi: √x + 1/√x ≥ 2 ; dấu "=" khi x = 1 nhưng do đk xác định nên ko có dấu "="
vậy √x + 1/√x > 2 <=> √x + 1 + 1/√x > 3 <=> P = 1/(√x + 1 + 1/√x) < 1/3 (đpcm)
tìm min A=\(\frac{2x^2+x-1}{x^2-2x+2}\)
\(A=\frac{2x^2+x-1}{x^2-2x+2}\Leftrightarrow Ax^2-2A.x+2A=2x^2+x-1\)
\(\Leftrightarrow x^2\left(A-2\right)-2x\left(A+1\right)+\left(2A+1\right)=0\) (1)
+) Với A = 2 thì \(-6x+5=0\Leftrightarrow x=-\frac{5}{6}\)
+) Với A khác 2 thì (1) là phương trình bậc 2.Tức (1) có nghiệm
Hay \(\Delta'=\left(A+1\right)^2-\left(A-2\right)\left(2A+1\right)\ge0\)
Giải cái bất phương trình trên là ok!
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
tích mình với
ai tích mình
mình tích lại
thanks
tìm min, max
\(C=\frac{x^4+1}{\left(x^2+1\right)^2}\)
\(D=\frac{3x^2-2x+3}{x^2+1}\)
Tìm min, max của biểu thức
A = \(\frac{1}{\left(x+1\right)^2+2000}\)
B = ( x2 + 2 )2 -1
C = x4 - 4x2 + 3
D = \(\frac{x^2+2x+4}{x^2+2x+3}\)