Rút gọn: \(\left(a+b+c\right)^3+\left(a-b-c\right)^3-6a\left(b+c\right)^2\)
Rút gọn: \(\left(a+b+c\right)^3-\left(b+c-a\right)^3-6a\left(b+c\right)^2\)
Rút gọn:
A=\(\left(a+b+c\right)^3+\left(a-b-c\right)^3-6a\left(b+c\right)^2\)
Ta có: A=(a+b+c)3+(a−b−c)3−6a(b+c)2
= a^3 + b^3 + c^3 + 3ab + 3ac + 3bc + a^3 + b^3 + c^3 - 3ab - 3ac + 3bc - 6a(b^2+2bc + c^2)
= a^3 + b^3 + c^3 + 3ab + 3ac + 3bc + a^3 + b^3 + c^3 - 3ab - 3ac + 3bc - 6ab^2 + 12abc+6ac^2
=2a^3 + 2b^3 + 2c^3 + 6a^2 + 12abc
Cậu dùng hằng đẳng thức nâng cao là ra. Nhớ tick mình nha,
Rút gọn:
A=\(\left(a+b+c\right)^3+\left(a-b-c\right)^3-6a\left(b+c\right)^2\)
Đặt b+c=x ta được:
A=(a+x)3+(a-x)3-6a.x2
=a3+3a2x+3ax2+x3+a3-3a2x+3ax2-x3-6ax2
=2a3
Rút gọn biểu thức:
\(A=\left(a+b+c\right)^3+\left(a-b-c\right)^3-6a\left(b+c\right)^2\)
\(A=\left(a+b+c\right)^3+\left(a-b-c\right)^3-6a\left(b+c\right)^2\)
\(=\left[a+\left(b+c\right)\right]^3+\left[a-\left(b+c\right)\right]^3-6a\left(b+c\right)^2\)
\(=a^3+3a^2\left(b+c\right)+3a\left(b+c\right)^2+\left(b+c\right)^3+a^3-3a^2\left(b+c\right)+3a\left(b+c\right)^2-\left(b+c\right)^3-6a\left(b+c\right)^2\)
\(=2a^3\)
Rút gọn:
A=\(\left(a+b+c\right)^3+\left(a-b-c\right)^3-6a\left(b+c\right)^2\)
Rút gọn:
A=\(\left(a+b+c\right)^3+\left(a-b-c\right)^3-6a\left(b+c\right)^2\)
\(A=\left[a+\left(b+c\right)\right]^3+\left[a-\left(b+c\right)\right]^3-6a\left(b+c\right)^2\)
\(=a^3+3a^2\left(b+c\right)+3a\left(b+c\right)^2+\left(b+c\right)^3+a^3-3a^2\left(b+c\right)+3a\left(b+c\right)^2-\left(b+c\right)^3-6a\left(b+c\right)^2\)
\(=2a^3+6a\left(b+c\right)^2-6a\left(b+c\right)^2=2a^3\)
Rút gọn:
A= ( a+b+c) \(^3+\left(a-b-c\right)^3-6a\left(b+c\right)^2\)
Rút gọn:
A=\(\left(a+b+c\right)^3+\left(a-b-c\right)^3-6a\left(b+c\right)^2\)
Rút gọn:
A=\(\left(a+b+c\right)^3+\left(a-b-c\right)^3-6a\left(b+c\right)^2\)
=a^3+b^3+c^3+a^3-b^3-c^3-(6ab+6ac)^2
=2a^3-6ab^2-6ac^2