Những câu hỏi liên quan
NN
Xem chi tiết
CL
Xem chi tiết
NT
28 tháng 4 2023 lúc 12:43

1/31>1/40

1/32>1/40

...

1/40=1/40

=>1/31+1/32+...+1/40>1/40*10=1/4

1/41>1/50

1/42>1/50

...

1/50=1/50

=>1/41+1/42+...+1/50>10/50=1/5

1/51>1/60

1/52>1/60

...

1/60=1/60

=>1/51+1/52+...+1/60>10/60=1/6

=>S>1/4+1/5+1/6=3/5

1/31<1/30

1/32<1/30

...

1/40<1/30

=>1/31+1/32+...+1/40<1/30*10=1/3

1/41<1/40

1/42<1/40

...

1/50<1/40

=>1/41+1/42+...+1/50<10/40=1/4

1/51<1/50

1/52<1/50

...

1/60<1/50

=>1/51+1/52+...+1/60<10/50=1/5

=>S<1/3+1/4+1/5=4/5

Bình luận (0)
NT
Xem chi tiết
NT
Xem chi tiết
NV
Xem chi tiết
an
18 tháng 2 2016 lúc 15:39

ta xét tổng của 1/31+...+1/40

tiếp tục 1/41+..+1/50

1/51+...+1/60

Trong 4 dãy số trên ta có 1/31> 1/32>1/33>...>1/41

=> Tổng trên < 10/31

cứ tiếp tục xét ta được S< 10/31+10/41+10/51<4/5

=> S < 4/5

Xét tương tự ta sẽ có S > 3/5

Bình luận (0)
NB
Xem chi tiết
H24
7 tháng 7 2016 lúc 21:29

A = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)

Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ;   (1/51 + 1/52+...+1/59+1/60) > 1/6

A > 1/4 + 1/5 + 1/6.

Trong khi đó (1/4 + 1/5 + 1/6) > 3/5

Vậy A > 3/5 (1)

Mặt khác

A = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)

Tương tự : (1/41 + 1/42 + ...+ 1/50)  < 1/4 ;   (1/51 + 1/52+...+1/59+1/60) < 1/5

Mà A = (1/3 + 1/4 + 1/5) < 4/5 (Vì 1/3 + 1/5 < 3/5 hay 7/12 < 3/5 hay 35/60 < 36/60)

Vậy A <  4/5 (2)

Từ (1);(2)=> 3/5 <S <4/5 (dpcm)

Bình luận (0)
NN
Xem chi tiết
N3
11 tháng 4 2019 lúc 11:15

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng) Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6 S > 1/4 + 1/5 + 1/6.

Trong khi đó (1/4 + 1/5 + 1/6) > 3/5 =>S > 3/5 (1) S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60) Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng) => S < 4/5 (2)

Từ (1) và (2) => 3/5 <S<4/5

Bình luận (0)
BM
11 tháng 4 2019 lúc 12:23

\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+...+\frac{1}{60}\right)\)

Mà \(\left(\frac{1}{31}+...+\frac{1}{40}\right)>\frac{1}{40}\cdot10=\frac{1}{4}\)

Tương tự : \(\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)>\frac{1}{5}\)

\(\left(\frac{1}{51}+...+\frac{1}{60}\right)>\frac{1}{6}\)

\(S>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}>\frac{3}{5}\)(*1)

Mặt khác:\(\left(\frac{1}{31}+...+\frac{1}{40}\right)< \frac{1}{31}\cdot10=\frac{1}{3}\)

\(\Rightarrow S< \frac{4}{5}\)(*2)

Từ (*1)(*2)= 3/5<S<4/5

Bình luận (0)
H24
Xem chi tiết
YN
8 tháng 4 2022 lúc 21:43

`Answer:`

 \(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{31}+\frac{1}{32}\)

a) Ta thấy:

\(\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)

\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}\)

\(\frac{1}{9}+...+\frac{1}{16}>8.\frac{1}{16}=\frac{1}{2}\)

\(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{32}>16.\frac{1}{32}=\frac{1}{2}\)

\(\Rightarrow S>\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{5}{2}\)

b) Ta thấy:

\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}< 3.\frac{1}{3}\)

\(\frac{1}{6}+...+\frac{1}{11}< 6.\frac{1}{6}\)

\(\frac{1}{12}+...+\frac{1}{23}< 12.\frac{1}{12}\)

\(\frac{1}{24}+...+\frac{1}{32}< 9.\frac{1}{24}\)

\(\Rightarrow S< \frac{1}{2}+1+1+1+\frac{9}{24}=\frac{31}{8}< \frac{9}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
ST
13 tháng 3 2017 lúc 14:33

Ta có: S = \(\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+...+\frac{1}{60}\right)\)

Nhận xét: \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)

                \(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{10}{50}=\frac{1}{5}\)

                 \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{10}{60}=\frac{1}{6}\)

\(\Rightarrow S>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)

\(\Rightarrow S>\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\)      (1)

Lại có: \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}< \frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)

           \(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}< \frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)

           \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{10}{50}=\frac{1}{5}\)

\(\Rightarrow S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}\)

\(\Rightarrow S< \frac{47}{60}< \frac{48}{60}=\frac{4}{5}\)         (2)

Từ (1) và (2) => \(\frac{3}{5}< S< \frac{4}{5}\) (đpcm)

Bình luận (0)
HD
13 tháng 3 2017 lúc 13:26

AI KẾT BN KO!

TIỆN THỂ TK MÌNH LUÔN NHA!

KONOSUBA!!!

AI TK MÌNH MÌNH TK LẠI 3 LẦN.

Bình luận (0)