\(\left(3x-1\right)^3=25.\left(3x-1\right)\)
\(\left(3x-14\right)^3=2^5.5^2+200\)
Tìm x
a)\(\left(3x-1\right)^3=25.\left(3x-1\right)\)
b)\(3^{2x+2}=9^{x+3}\)
c)\(8^{2x+1}=2^{27}:4^6\)
d)\(2.3^x=10.3^{12}+8.27^4\)
e)\(\left(3x-14\right)^3=2^5+5^2+200\)
Phân tích đa thức \(18x^3-\dfrac{8}{25}x\) thành nhân tử
a. \(\dfrac{2}{25}x\left(9x^2-4\right)=\dfrac{2}{25}x\left(3x-2\right)\left(3x+2\right)\)
b. \(2x\left(9x^2-\dfrac{4}{25}\right)=2x\left(3x-\dfrac{2}{5}\right)\left(3x+\dfrac{2}{5}\right)\)
Cách phân tích nào đúng, a hay b. Giải thích vì sao?
1. \(\frac{1}{2}x^2-\left(\frac{1}{2}x-4\right)\frac{1}{2}x=-14\)
2. \(3\left(1-4x\right)\left(x-1\right)+4\left(3x-2\right)\left(x+3\right)=-27\)
3. \(6x\left(5x+3\right)+3x\left(1-10x\right)=7\)
4. \(\left(3x-3\right)\left(5-21x\right)+\left(7x+4\right)\left(9x-5\right)=44\)
5. \(\left(-2+x^3\right)\left(-2+x^2\right)\left(-2+x^2\right)=1\)
Yêu cầu đề bài là gì hả bạn?
Giải phương trình
\(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}\)\(+2\left(3x+1\right)\)
\(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2\left(3x+1\right)\)
\(\Leftrightarrow\frac{2\left(2x+1\right)\left(3x+1\right)-\left(3x+1\right)\left(3x-2\right)}{3}-3\left(3x+1\right)=0\)
\(\Leftrightarrow\frac{\left(4x+2\right)\left(3x+1\right)-\left(3x+1\right)\left(3x-2\right)}{3}-3\left(3x+1\right)=0\)
\(\Leftrightarrow\frac{12x^2+10x+2-9x^2+6x-3x+2}{3}-9x-3=0\)
\(\Leftrightarrow\frac{3x^2+13x+4-27x-9}{3}=0\Leftrightarrow\frac{3x^2-14x-5}{3}=0\)
\(\Leftrightarrow3x^2-14x-5=0\Leftrightarrow3x^2-14x=5\Leftrightarrow x\left(3x-14\right)=5\)
\(.................\)
v: Làm tiếp nè
3x^2 - 14x - 5 = 0
<=> 3x^2 - 15x + x - 5 = 0
<=> ....
Tìm x: \(\left(3x-1\right)^3-2\left(2x-3\right)^2-3\left(x-2\right)\left(3-x\right)=\left(1+3x\right)^3-2\left(1+3x\right)^2\)
phân tích theo hằng đẳng thức rồi rút gọn là ra thôi bạn
Tìm x,y,z ,biết:
\(a,5^{3x+1}=25^{x+2}\)
\(b,\left(3x-1\right)^{200}=\left(1-3x\right)^{197}\)
\(c,\left(x-\frac{1}{2}\right)^{100}+\left(y-4\right)^{102}\)
\(đ,\left(\frac{1}{2}x+1\right)^2+\left(\frac{2}{3}y-1\right)^2+|x-y-z|\le0\)
Tìm a,b,c, biết\(ab=2,bc=3,ca=54\)
a) \(5^{3x+1}=25^{x+2}\)
\(\Leftrightarrow5^{3x+1}=\left(5^2\right)^{x+2}\)
\(\Leftrightarrow5^{3x+1}=5^{2x+4}\)
\(\Leftrightarrow3x+1=2x+4\)
\(\Leftrightarrow3x-2x=4-1\)
\(\Leftrightarrow x=3\)
b) \(\left(3x-1\right)^{200}=\left(1-3x\right)^{197}\)
\(\Leftrightarrow\left(1-3x\right)^{200}=\left(1-3x\right)^{197}\)
\(\Leftrightarrow\left(1-3x\right)^{200}-\left(1-3x\right)^{197}=0\)
\(\Leftrightarrow\left(1-3x\right)^{197}\left[\left(1-3x\right)^3-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=0\end{cases}}\)
rút gọn biểu thức sau bằng cách nhanh nhất
A = \(\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)
B = \(\left(3x^3+3x+1\right)\cdot\left(3x^3-3x+1\right)-\left(3x^3+1\right)^2\)
C = \(\left(2-6x\right)^2+\left(2-5x\right)^2+2\cdot\left(6x-2\right)\cdot\left(2-5x\right)\)
D = \(5\cdot\left(3x-1\right)^2+4\cdot\left(5x+1\right)^2-12\cdot\left(5x-2\right)\left(5x+2\right)\)
E = \(\left(3x-1\right)^2+\left(2x+4\right)\cdot\left(1-3x\right)+\left(x+2\right)^2\)
G = \(\left(x-1\right)^3+4\cdot\left(x+1\right)\cdot\left(1-x\right)+3\cdot\left(x-1\right)\cdot\left(x^2+x+1\right)\)
\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)
\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)
\(=2a^2.2b^2-4a^2b^2=0\)
\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)
\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)
\(=\left[4-11x\right]^2\)
\(=16-88x+121x^2\)
chúc bn học tốt
rút gọn biểu thức
a/ 2x\(\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
b/ \(\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)
c/ \(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)
d/ ( 3 + 1 ) \(\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
rút gọn biểu thức
a)2x(2x−1)2−3x(x+3)(x−3)−4x(x+1)2
=2x(4x2-4x+1)-3x.(x2-9)-4x(x2+2x+1)
=8x3-8x2+2x-3x3-27x-4x3-8x2-4x
=8x3-16x2-7x3-29x
Rut gon cac bieu thuc sau
b,P=\(\left(3x+1\right)^2-2\left(1+3x\right)\left(3x+5\right)+\left(3x+5\right)^2\)
T=(3+1)\(\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(P=\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2=\left(3x+1-3x-5\right)^2=\left(-4\right)^2=16\)
---
\(T=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(\Rightarrow2T=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(2T=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(2T=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(2T=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(2T=\left(3^8-1\right)\left(3^8+1\right)=3^{16}-1\)
\(\Rightarrow T=\dfrac{3^{16}-1}{2}=21523360\)