Những câu hỏi liên quan
DF
Xem chi tiết
TH
1 tháng 1 2021 lúc 18:46

Ta có: \(\left(x-1\right)^2+\left(x+y\right)^2\le9\Rightarrow x+y\le3\).

Áp dụng bất đẳng thức AM - GM ta có:

\(\dfrac{2}{x}+2x\ge2\sqrt{\dfrac{2}{x}.2x}=4;\dfrac{4}{y}+y\ge2\sqrt{\dfrac{4}{y}.y}=4\).

Do đó \(\dfrac{2}{x}\ge4-2x;\dfrac{4}{y}\ge4-y\)

\(\Rightarrow P\ge8-4\left(x+y\right)\ge-4\). (do \(x+y\le3\)).

Vậy...

Đẳng thức xảy ra khi và chỉ khi x = 1; y = 2.

Bình luận (1)
SL
Xem chi tiết
LL
Xem chi tiết
NL
Xem chi tiết
PN
17 tháng 11 2020 lúc 15:25

Xét biểu thức \(A=x\left(x-3\right)\left(x-4\right)\left(x-7\right)=\left(x^2-7x\right)\left(x^2-7x+12\right)\)

Đặt \(x^2-7x+6\rightarrow t\)Khi đó \(A=\left(t-6\right)\left(t+6\right)=t^2-36\ge-36\)

Dấu "=" xảy ra khi và chỉ khi \(t=0\)hay \(x^2-7x+6=0=>\left(x-6\right)\left(x-1\right)=0=>\orbr{\begin{cases}x=6\\x=1\end{cases}}\)

Vậy GTNN của biểu thức \(A=-36\)đạt được khi \(x=6orx=1\)

Bình luận (0)
 Khách vãng lai đã xóa
PN
17 tháng 11 2020 lúc 15:27

Xét biểu thức \(B=2x^2+y^2-2xy-2x+3=\left(x^2-2xy+y^2\right)+x^2-2x+1+2\)

\(=\left(x-y\right)^2+\left(x-1\right)^2+2\ge2\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}< =>\hept{\begin{cases}1-y=0\\x=1\end{cases}}< =>\hept{\begin{cases}x=1\\y=1\end{cases}< =>x=y=1}}\)

Vậy GTNN của biểu thức \(B=2\)đạt được khi \(x=y=1\)

Bình luận (0)
 Khách vãng lai đã xóa
PN
17 tháng 11 2020 lúc 15:30

Xét biểu thức \(C=x^2+y^2-3x+3y=\left(x^2-3x+\frac{9}{4}\right)+\left(y^2+3y+\frac{9}{4}\right)-\frac{9}{2}\)

\(=\left(x^2-3x+\frac{3^2}{2^2}\right)+\left(y^2+3y+\frac{3^2}{2^2}\right)-\frac{9}{2}=\left(x-\frac{3}{2}\right)^2+\left(y+\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-\frac{3}{2}=0\\y+\frac{3}{2}=0\end{cases}}< =>\hept{\begin{cases}x=\frac{3}{2}\\y=-\frac{3}{2}\end{cases}< =>x=-y=\frac{3}{2}}\)

Vậy GTNN của biểu thức \(C=-\frac{9}{2}\)đạt được khi \(x=-y=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
TB
Xem chi tiết
H24
15 tháng 7 2019 lúc 21:34

Đặt \(\hept{\begin{cases}2x=a\left(a>0\right)\\3y=b\left(b>0\right)\end{cases}}\)

\(\Rightarrow2x+3y=a+b\le2,x.y=\frac{ab}{6}\)

\(\Rightarrow P=\frac{4}{a^2+b^2}+\frac{9}{\frac{ab}{6}}=\frac{4}{a^2+b^2}\ne\frac{54}{ab}\)

Vì \(a>0,b>0\)

Nên áp dụng BĐT cô-si ta có:\(a+b\ge2\sqrt{ab}\)

Mà \(a+b\le2\Rightarrow2\sqrt{ab}\le2\Rightarrow\sqrt{ab}\le1\Rightarrow ab\le1\)

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với x > 0 , y > 0 

\(\Rightarrow\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge1\)

\(\Rightarrow\frac{4}{a^2+b^2}+\frac{4}{2ab}\ge4\)

\(\Rightarrow P=\frac{4}{a^2+b^2}+\frac{4}{2ab}+\frac{52}{ab}\)

\(P\ge4+52=56\)

\(\Rightarrow MinP=56\Leftrightarrow\hept{\begin{cases}a=b\\a+b=2\\a.b=1\end{cases}}\Leftrightarrow\hept{a=b=1\Leftrightarrow2x=3y=1\Leftrightarrow x=\frac{1}{2},y=\frac{1}{3}}\)

Bình luận (0)
NH
Xem chi tiết
KR
7 tháng 5 2018 lúc 18:10

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

Bình luận (0)
BH
Xem chi tiết
BH
8 tháng 12 2018 lúc 18:31

tìm GTNN nhé.giúp mình.mik cám ơn nhiều

Bình luận (0)
H24
8 tháng 12 2018 lúc 18:36

M min khi và chỉ khi x=3;y=2

Bình luận (0)
KS
8 tháng 12 2018 lúc 19:18

\(\frac{3}{x}+\frac{2}{y}+\frac{6}{2x+3y}\)

\(=\frac{3y+2x}{xy}+\frac{6}{2x+3y}\)

\(=\frac{3.\left(3y+2x\right)}{4.6}+\frac{3y+2x}{24}+\frac{6}{2x+3y}\)

\(=\frac{3.\left(3y+2x\right)}{24}+\frac{3y+2x}{24}+\frac{6}{2x+3y}\)

Áp dụng BĐT AM-GM ta có:

\(\frac{3.\left(3y+2x\right)}{24}+\frac{3y+2x}{24}+\frac{6}{2x+3y}\ge\frac{3.2.\sqrt{3y.2x}}{24}+2.\sqrt{\frac{\left(3y+2x\right)}{24}.\frac{6}{\left(2x+3y\right)}}=\frac{6.\sqrt{6.6}}{24}+2.\sqrt{\frac{1}{4}}=\frac{3}{2}+1=2,5\)

\(\Rightarrow\frac{3}{x}+\frac{2}{y}+\frac{6}{2x+3y}\ge2,5\)

Dấu '" = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{3y+2x}{24}=\frac{6}{3y+2x}\\3y=2x\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(3y+2x\right)^2=144\\\frac{y}{2}=\frac{x}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}3y+2x=12\left(v\text{ì}x,y>0\right)\\\frac{3y}{6}=\frac{2x}{6}\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{3y}{6}=\frac{2x}{6}=\frac{3y+2x}{6+6}=\frac{12}{12}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{3y}{6}=1\\\frac{2x}{6}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}3y=6\\2x=6\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\x=3\end{cases}}\)

Vậy GTNN của \(\frac{3}{x}+\frac{2}{y}+\frac{6}{2x+3y}=2,5\Leftrightarrow x=3;y=2\)

Tham khảo nhé~

Bình luận (0)
TH
Xem chi tiết
HG
Xem chi tiết
AN
11 tháng 10 2016 lúc 15:55

Đặt \(\hept{\begin{cases}\sqrt{2x+3}=a\left(a>0\right)\\\sqrt{y}=b\left(b\ge0\right)\end{cases}}\)

Thì ta có

\(\frac{b^2}{a^2}=\frac{a+1}{b+1}\)

\(\Leftrightarrow b^3+b^2=a^3+a^2\)

\(\Leftrightarrow\left(b-a\right)\left(b^2+ab+a^2\right)+\left(b-a\right)\left(b+a\right)=0\)

\(\Leftrightarrow\left(b-a\right)\left(b^2+ab+a^2+b+a\right)=0\)

Mà \(\left(b^2+ab+a^2+b+a\right)>0\)

\(\Rightarrow a=b\)

\(\Rightarrow2x+3=y\)

Thế vào Q ta được 

\(Q=2x^2-5x-12=\left(2x^2-\frac{2x\times\sqrt{2}\times5}{2\sqrt{2}}+\frac{25}{8}\right)-\frac{121}{8}\)

\(=\left(\sqrt{2}x-\frac{5}{2\sqrt{2}}\right)^2-\frac{121}{8}\ge\frac{-121}{8}\)

Bình luận (0)