Tìm giá trị nhỏ nhất A=lx+1l+5
tìm giá trị nhỏ nhất của A=lx-2014l+lx+1l
giúp mình với
Biết 6x+y=5 tìm giá trị nhỏ nhất của biểu thức:
A= lx+1l+ly-2l
Lời giải:
$6x+y=5$
$\Rightarrow y=5-6x$
Khi đó: $A=|x+1|+|y-2|=|x+1|+|5-6x-2|=|x+1|+|3-6x|$
Nếu $x<-1$ thì:
$A=-x-1+3-6x=2-7x> 2-7(-1)=9$
Nếu $\frac{1}{2}\geq x\geq -1$ thì:
$A=x+1+3-6x=4-5x\geq 4-5.\frac{1}{2}=\frac{3}{2}$
Nếu $x> \frac{1}{2}$ thì:
$A=x+1+6x-3=7x-2> 7.\frac{1}{2}-2=\frac{3}{2}$
Từ 3 TH trên suy ra $A_{\min}=\frac{3}{2}$ khi $x=\frac{1}{2}$
Tìm giá trị nhỏ nhất của biểu thức
A=lx-2001l + lx-1l
Vì | x - 2001| > hoặc = 2001 - x
| x - 1| > hoặc = x - 1
Nên A = |x - 2001| + | x - 1| > hoặc = 2001 - x + x - 1 = 2000
=> A > hoặc = 2002
=> Để A có giá trị nhỏ nhất <=> A = 2002
Khi đó 2001 - x > hoặc = 0 nên x < hoặc = 2001 (1)
x - 1 > hoặc = 0 nên x > hoặc = 1 (2)
Từ (1) và (2) => 1 < hoặc = x < hoặc = 2001
Vậy A có GTNN là 2000 <=> 1 < hoặc = x < hoặc = 2001
Vì | x - 2001| > hoặc = 2001 - x
| x - 1| > hoặc = x - 1
Nên A = |x - 2001| + | x - 1| > hoặc = 2001 - x + x - 1 = 2000
=> A > hoặc = 2002
=> Để A có giá trị nhỏ nhất <=> A = 2002
Khi đó 2001 - x > hoặc = 0 nên x < hoặc = 2001 (1)
x - 1 > hoặc = 0 nên x > hoặc = 1 (2)
Từ (1) và (2) => 1 < hoặc = x < hoặc = 2001
Vậy A có GTNN là 2000 <=> 1 < hoặc = x < hoặc = 2001
Tìm giá trị nhỏ nhất A của biết: A = lx-1l + lx-80l + lx-2018l
(Giải đầy đủ nha)
Tìm giá trị nhỏ nhất:
C = lx-1l + lx-2l + ... + lx-100l
tìm giá trị nhỏ nhất B=lx-1l + (y+x-2)^2 + 5
Tìm giá trị nhỏ nhất của biểu thức lx - 1l + lx - 2l + lx -3l + ... + lx - 100l.
còn cái nịtッ
bạn nói cách giải hộ mk với
1. với giá trị nào của x thì A=lx-3l + lx-5l + lx-7l đạt giá trị nhỏ nhất ?
2. với giá trị nào của x thì B= lx-1l + lx-2l + lx-3l + lx-5l đạt giá trị nhỏ nhất ?
Bài 1:
\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)
\(\ge x-3+0+7-x=4\)
Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)
Vậy MinA=4 khi x=5
Bài 2:
\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)
\(\ge x-1+x-2+3-x+5-x=5\)
Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)
Với giá trị nào của x; y thì biểu thức: A=lx- yl+l x+ 1l+ 2016 đạt giá trị nhỏ nhất. Tìm giá trị đó!
Vì |x-y|\(\ge\)0 với mọi x,y
|x+1|\(\ge\)0 Với mọi x
\(\Rightarrow\)|x-y|+|x+1|\(\ge\)0 Với mọi x,y
\(\Rightarrow\)|x-y|+|x+1|+2016\(\ge\)2016 với mọi x,y
\(\Rightarrow\)A\(\ge\)2016 với mọi x,y
Dấu '=' xảy ra\(\Leftrightarrow\)\(\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x-y=0\\x=0-1=-1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}-1-y=0\\x=-1\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}y=-1-0=-1\\x=-1\end{cases}}\)
Vậy Min A=2016\(\Leftrightarrow\)x=-1,y=-1