Những câu hỏi liên quan
H24
Xem chi tiết
NH
Xem chi tiết
MB
20 tháng 4 2019 lúc 20:12

Ta có: \(\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{64^2}< \frac{1}{4^2}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{63.64}\)

\(\frac{1}{4^2}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{63.64}=\frac{1}{4^2}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{63}-\frac{1}{64}\)

\(=\frac{1}{4^2}+\frac{1}{4}-\frac{1}{64}\)

VÌ: \(\frac{1}{4^2}+\frac{1}{4}-\frac{1}{64}< \frac{1}{4^2}+\frac{1}{4}=\frac{5}{16}\)

Nên: \(\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{64^2}< \frac{5}{16}\left(dpcm\right)\)

Bình luận (0)
HC
Xem chi tiết
NS
Xem chi tiết
H24
18 tháng 5 2019 lúc 20:28

VT\(< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{63.64}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-...-\frac{1}{64}=\frac{15}{64}< \frac{5}{16}\)

Vậy ta có đpcm.

Bình luận (0)
QN
Xem chi tiết
NT
26 tháng 6 2023 lúc 11:57

15: A= 1/3-3/4+3/5+1/2007-1/36+1/15-2/9

Sửa đề: 

A=-3/4-2/9-1/36+1/3+3/5+1/15+1/2007

=-27/36-8/36-1/36+5/15+9/15+1/15+1/2007

=-1+1+1/2007=1/2007

16:

\(A=\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}-\dfrac{3}{4}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{64}\)

\(=\dfrac{5+9+1}{15}+\dfrac{-27-8-1}{36}+\dfrac{1}{64}\)

=1/64

17:

=1/2-1/2+2/3-2/3+3/4-3/4+4/5-4/5+5/6-5/6-6/7

=-6/7

Bình luận (2)
NP
Xem chi tiết
KT
Xem chi tiết
KT
1 tháng 9 2018 lúc 21:06

ai nhanh mình k

Bình luận (0)
VT
5 tháng 5 2021 lúc 21:15

1 /2 -1 /4 + 1 /8-1 /16 + 1 /32-1 /64 < 1 /3

Cách 1:21/64 < 1/3

Cách 2:21/64 < 0.(3)

Đúng

1 /2 + 1 /4 + 1 /8 + 1 /16 + 1 /32 + 1 /64 < 1 /3

Cách 2:63/64 < 0.(3)

Ko đúng

Câu 3 mình ko biết

Bình luận (0)
 Khách vãng lai đã xóa
HH
5 tháng 5 2021 lúc 21:20

a)cho \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)là A

ta có:A=\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

2A=\(\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)2\)

2A=\(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)

2A+A=\(\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\right)+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)\)

3A=\(1-\frac{1}{64}\Rightarrow3A=\frac{63}{64}\Rightarrow A=\frac{21}{64}< \frac{1}{3}\)

vậy \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)

b) sai đề (\(\frac{63}{64}< \frac{1}{3}\)hay sao)

c)sai nối (nếu x=y=3 thì 2x+3y=17 chia hết nhưng 9x+5y=42 ko chia hết)

Bình luận (0)
 Khách vãng lai đã xóa
PN
Xem chi tiết
VN
Xem chi tiết
LC
11 tháng 6 2019 lúc 7:39

Đặt \(A=\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{64^2}\)

Đặt \(B=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{64^2}\)

Ta có: \(\frac{1}{5^2}< \frac{1}{4.5}\)

           \(\frac{1}{6^2}< \frac{1}{5.6}\)

            ....................

          \(\frac{1}{64^2}< \frac{1}{63.64}\)

\(\Rightarrow B< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{63.64}\)

\(\Rightarrow B< \frac{1}{4}-\frac{1}{64}< \frac{1}{4}\)

\(\Rightarrow B< \frac{1}{4}\)

\(\Rightarrow A< \frac{1}{4^2}+\frac{1}{4}\)

\(\Rightarrow A< \frac{5}{16}\)

Bình luận (0)
XO
11 tháng 6 2019 lúc 7:57

Ta có S =\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{64^2}\)

\(\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6}+...+\frac{1}{64.64}\)

\(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{63.64}\)

\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{63}-\frac{1}{64}\)

\(\frac{1}{3}-\frac{1}{64}\)

\(\frac{61}{192}\)\(\frac{60}{192}=\frac{5}{16}\)

S <  \(\frac{61}{192}>\frac{5}{16}\)

=> sai đề 

Bình luận (0)