1)Chứng minh:
1/4^2 + 1/5^2 + 1/6^2 + .... + 1/64^2 < 5/16
1) Chứng tỏ
1/4^2 + 1/5^2 + 1/6^2 + .... + 1/64^2 < 5/16
2) Chứng tỏ
A= 1/5 + 1/14 + 1/28 + 1/44 + 1/61 + 1/85 + 1/97 < 1/2
1/4^2 + 1/5^2 + 1/6^2 + ... + 1/64^2 < 5/16
Ta có: \(\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{64^2}< \frac{1}{4^2}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{63.64}\)
\(\frac{1}{4^2}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{63.64}=\frac{1}{4^2}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{63}-\frac{1}{64}\)
\(=\frac{1}{4^2}+\frac{1}{4}-\frac{1}{64}\)
VÌ: \(\frac{1}{4^2}+\frac{1}{4}-\frac{1}{64}< \frac{1}{4^2}+\frac{1}{4}=\frac{5}{16}\)
Nên: \(\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{64^2}< \frac{5}{16}\left(dpcm\right)\)
Chứng minh:
\(\frac{1}{4^2}\)+ \(\frac{1}{5^2}\)+\(\frac{1}{6^2}\)+...+\(\frac{1}{64^2}\)<\(\frac{5}{16}\)
\(\frac{1}{4^2}\)Giúp mik vs!!!!!!
VT\(< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{63.64}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-...-\frac{1}{64}=\frac{15}{64}< \frac{5}{16}\)
Vậy ta có đpcm.
Câu 15 A= 1/3-3/4+3/5+1/2007-1/36+1/25-2/9
Câu 16 A=1/3- 3/4- (-3/5)+ 1/64- 2/9- 1/36+ 1/15
Câu 17 A=1/2- 2/3+ 3/4- 4/5+ 5/6- 6/7- 5/6+ 4/5- 3/4+ 2/3- 1/2
15: A= 1/3-3/4+3/5+1/2007-1/36+1/15-2/9
Sửa đề:
A=-3/4-2/9-1/36+1/3+3/5+1/15+1/2007
=-27/36-8/36-1/36+5/15+9/15+1/15+1/2007
=-1+1+1/2007=1/2007
16:
\(A=\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}-\dfrac{3}{4}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{64}\)
\(=\dfrac{5+9+1}{15}+\dfrac{-27-8-1}{36}+\dfrac{1}{64}\)
=1/64
17:
=1/2-1/2+2/3-2/3+3/4-3/4+4/5-4/5+5/6-5/6-6/7
=-6/7
1 rút gọn 1/1 X 3 + 1/3 X 5 + 1/5 X 7+......+ 1/(2n+1) X (2n+3)
2 so sánh 1/2 X 3/4 X 5/6 X...... X 9999/10000 và 1/100
3 Tìm số tự nhiên x biết
1/3 +1/6 +1/10+....+2/x(x+1)=2017/2019
4 Chứng minh rằng
1/4 +1/16 +1/36 +1/64 +1/100 +1/144 +1/196 < 1/2
chứng minh 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3
Chứng minh 1/2 + 1/4 + 1/8 + 1/16+ 1/32 + 1/64 < 1/3
Chứng minh: ( 2x + 3y ) Chia hết cho 17 ki và chỉ khi ( 9x + 5y) chia hết cho 17
1 /2 -1 /4 + 1 /8-1 /16 + 1 /32-1 /64 < 1 /3
Cách 1:21/64 < 1/3
Cách 2:21/64 < 0.(3)
Đúng
1 /2 + 1 /4 + 1 /8 + 1 /16 + 1 /32 + 1 /64 < 1 /3
Cách 2:63/64 < 0.(3)
Ko đúng
Câu 3 mình ko biết
a)cho \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)là A
ta có:A=\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
2A=\(\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)2\)
2A=\(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)
2A+A=\(\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\right)+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)\)
3A=\(1-\frac{1}{64}\Rightarrow3A=\frac{63}{64}\Rightarrow A=\frac{21}{64}< \frac{1}{3}\)
vậy \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b) sai đề (\(\frac{63}{64}< \frac{1}{3}\)hay sao)
c)sai nối (nếu x=y=3 thì 2x+3y=17 chia hết nhưng 9x+5y=42 ko chia hết)
Cho A=1/2+1/3+1/4+1/5+...+1/64
Chứng minh rằng: 2<A<6 làm nhanh lên giúp mình nha
CMR:
\(\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+..................+\frac{1}{64^2}< \frac{5}{16}\)
Đặt \(A=\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{64^2}\)
Đặt \(B=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{64^2}\)
Ta có: \(\frac{1}{5^2}< \frac{1}{4.5}\)
\(\frac{1}{6^2}< \frac{1}{5.6}\)
....................
\(\frac{1}{64^2}< \frac{1}{63.64}\)
\(\Rightarrow B< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{63.64}\)
\(\Rightarrow B< \frac{1}{4}-\frac{1}{64}< \frac{1}{4}\)
\(\Rightarrow B< \frac{1}{4}\)
\(\Rightarrow A< \frac{1}{4^2}+\frac{1}{4}\)
\(\Rightarrow A< \frac{5}{16}\)
Ta có S =\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{64^2}\)
= \(\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6}+...+\frac{1}{64.64}\)
< \(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{63.64}\)
= \(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{63}-\frac{1}{64}\)
= \(\frac{1}{3}-\frac{1}{64}\)
= \(\frac{61}{192}\)> \(\frac{60}{192}=\frac{5}{16}\)
S < \(\frac{61}{192}>\frac{5}{16}\)
=> sai đề