Chứng minh: (a+b)2 <=4ab
Cho a>2, b>2.
a) Chứng minh a.b > a+b
b) Chứng minh a^2+b^2+c^2 ≥ ab+bc+ca
c) Chứng minh a^2+b^2+c^2+3 ≥ 2.(a+b+c)
d) Chứng minh a^2+b^2 ≥ 1/2 với a+b=1
e) Chứng minh a^2+b^2+c^2 ≥ 1/3 với a+b+c=1
a) cho a³+b³=2 . Chứng minh rằng a+b≤2
b) cho a²+b²≤2.Chứng minh rằng a+b≤2
.Chứng minh:
a) Chứng minh: (a + b)2 ≤ 2(a2 + b2).
b) Chứng minh:(a + b + c)2 ≤ 3(a2 + b2 + c2).
a) Cho a^2 + b^2 + c^2 + 3 = 2(a+b+c). Chứng minh a=b=c=1
b) Cho (a+b+c)^2 = 3(ab+bc+ac). Chứng minh a+b+c
c) Cho (a+b)^2 + (b-c)^2 + (c-a)^2 = (a+b-2c^2) + (b+c-2a^2) + (c+a-2b)^2. Chứng minh a=b=c
Hãy tích cho tui đi
vì câu này dễ mặc dù tui ko biết làm
Yên tâm khi bạn tích cho tui
Tui sẽ ko tích lại bạn đâu
THANKS
\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c\ge0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Dấu ''='' xảy ra <=> a = b = c = 1
`a^2+b^2+c^2+3=2(a+b+c)`
`<=>a^2+b^2+c^2+3-2a-2b-2c=0`
`<=>a^2-2a+1+b^2-2b+1+c^2-2c+1=0`
`<=>(a-1)^2+(b-1)^2+(c-1)^2=0`
`VT>=0`
Dấu "=" `<=>a=b=c=1`
Áp dụng bđt cosi ta có:
`a^2+b^2>=2ab`
`b^2+c^2>=2bc`
`c^2+a^2>=2ca`
`=>2(a^2+b^2+c^2)>=2(ab+bc+ca)`
`=>a^2+b^2+c^2>=ab+bc+ca`
`=>(a+b+c)^2>=3(ab+bc+ca)`
Dấu '=" `<=>a=b=c`
3 không rõ đề
Chứng minh đẳng thức:
a) Cho \(2\left(a^2+b^2\right)=\left(a-b\right)^2.\) Chứng minh rằng a; b là 2 số đối nhau.
b) Cho \(a^2+b^2+c^2+3=2\left(a+b+c.\right)\) Chứng minh rằng a = b = c = 1
c) Cho \(\left(a+b+c\right)^2=3\left(ab+ac+bc\right).\) Chứng minh rằng a = b = c
a. \(2\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Leftrightarrow2a^2+2b^2=a^2+b^2-2ab\)
\(\Leftrightarrow a^2+b^2=-2ab\)
\(\Leftrightarrow a^2+2ab+b^2=0\)
\(\Leftrightarrow\left(a+b\right)^2=0\)
\(\Leftrightarrow a+b=0\Leftrightarrow a=-b\) (đpcm)
b. \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Vì \(\left(a-1\right)^2;\left(b-1\right)^2;\left(c-1\right)^2\ge0\)
\(\Rightarrow\left(a-1\right)^2=\left(b-1\right)^2=\left(c-1\right)^2=0\)
\(\Leftrightarrow a-1=b-1=c-1=0\Leftrightarrow a=b=c=1\)
c. \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Tương tự câu b ta có a = b = c
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2 =0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| < |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)
2 = 0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
a. Cho a^2 + b^2 + c^2 + 3= 2(a + b + c). Chứng minh rằng: a=b=c=1
b. Cho (a + b + c)^2 = 3(ab + ac + bc). Chứng minh rằng: a=b=c
c. Cho a^2 + b^2 + c^2 = ab + ac +bc. Chứng minh rằng: a=b=c
a)a2+b2+c2+3=2(a+b+c)
=>a2+b2+c2+1+1+1-2a-2b-2c=0
=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0
=>(a-1)2+(b-1)2+(c-1)2=0
=>a-1=b-1=c-1=0 <=>a=b=c=1
-->Đpcm
b)(a+b+c)2=3(ab+ac+bc)
=>a2+b2+c2+2ab+2ac+2bc -3ab-3ac-3bc=0
=>a2+b2+c2-ab-ac-bc=0
=>2a2+2b2+2c2-2ab-2ac-2bc=0
=>(a2- 2ab+b2)+(b2-2bc+c2) + (c2-2ca+a2) = 0
=>(a-b)2+(b-c)2+(c-a)2=0
Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0
=>a-b hoặc b=c hoặc a=c
=>a=b=c
-->Đpcm
c)a2+b2+c2=ab+bc+ca
=>2(a2+b2+c2)=2(ab+bc+ca)
=>2a2+2b2+c2=2ab+2bc+2ca
=>2a2+2b2+c2-2ab-2bc-2ca=0
=>a2+a2+b2+b2+c2+c2-2ab-2bc-2ca=0
=>(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ca+c2)=0
=>(a-b)2+(b-c)2+(a-c)2=0
Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0
=>a-b hoặc b=c hoặc a=c
=>a=b=c
-->Đpcm
a) Ta có : \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Vì \(\left(a-1\right)^2\ge0,\left(b-1\right)^2\ge0,\left(c-1\right)^2\ge0\) nên pt trên tương đương với \(\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\) \(\Leftrightarrow a=b=c=1\)
b) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\) (1)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ac\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Mà \(\left(a-b\right)^2\ge0,\left(b-c\right)^2\ge0,\left(c-a\right)^2\ge0\)
\(\Rightarrow\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\) \(\Rightarrow a=b=c\)
c) Giải tương tự câu b) , bắt đầu từ (1)
a) Cho a^2 + b^2 + c^2 + 3 = 2(a+b+c). Chứng minh a=b=c=1
b) Cho (a+b+c)^2 = 3(ab+bc+ac). Chứng minh a+b+c
c) Cho (a+b)^2 + (b-c)^2 + (c-a)^2 = (a+b-2c^2) + (b+c-2a^2) + (c+a-2b)^2. Chứng minh a=b=c
a, a2+b2+c2+3=2(a+b+c)
a2+b2+c2+3-2a-2b-2c=0
(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0
(a-1)2+(b-1)2+(c-1)2=0
mà (a-1)2+(b-1)2+(c-1)2\(\ge\)0
=>\(\left\{{}\begin{matrix}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a-1=0\\b-1=0\\c-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\)
=> a=b=c=1
a) Cho P=5+5^2+5^3+5^4+5^5+...+5^102 .Chứng minh P:6 b) Cho A=1+4+4^2+4^3+...+4^100 Chứng minh A:5 c) Cho B = 1+2+2^2+2^3+...2^98 Chứng minh B:7 d) Cho C =1+3+3^2+3^3+...+3^104 Chứng minh C:40