chứng tỏ rằng
A= 1/5 + 1/14 + 1/28 + 1/44 + 1/61 + 1/85 + 1/97 < 1/2
Chứng tỏ B=1/5+1/14+1/28+1/44+1/61+1/85+1/97<1/2
Giúp mình với
1) Chứng tỏ
1/4^2 + 1/5^2 + 1/6^2 + .... + 1/64^2 < 5/16
2) Chứng tỏ
A= 1/5 + 1/14 + 1/28 + 1/44 + 1/61 + 1/85 + 1/97 < 1/2
chứng minh: 1/5 + 1/14+1/28 +1/44 + 1/61+1/85+1/97 <1/2
chứng minh rằng:
A=\(\frac{1}{5}+\frac{1}{14}+\frac{1}{28}+\frac{1}{44}+\frac{1}{61}+\frac{1}{85}+\frac{1}{97}< \frac{1}{2}\)
chứng minh
1/5+1/14+1/28+1/44+1/61+1/85+1/97<1/2
Chứng minh rằng:
\(\dfrac{1}{5}-\dfrac{1}{14}+\dfrac{1}{28}+\dfrac{1}{44}+\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{97}< \dfrac{1}{2}\)
Sai đề. Sửa đề :v
Cmr: \(\dfrac{1}{5}+\dfrac{1}{14}+\dfrac{1}{28}+\dfrac{1}{44}+\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{97}< \dfrac{1}{2}\)
Giải:
Đặt \(A=\dfrac{1}{5}+\dfrac{1}{14}+\dfrac{1}{28}+\dfrac{1}{44}+\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{97}\)
Ta có:
\(A=\dfrac{1}{5}+\left(\dfrac{1}{14}+\dfrac{1}{28}+\dfrac{1}{44}\right)+\left(\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{97}\right)\)
\(A< \dfrac{1}{5}\left(\dfrac{1}{14.3}\right)+\left(\dfrac{1}{61.3}\right)\)
\(A< \dfrac{1}{5}+\dfrac{3}{14}+\dfrac{3}{61}\)
\(A< \dfrac{1}{5}+\dfrac{3}{12}+\dfrac{1}{20}\)
\(A< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\)
\(\Rightarrow A< \dfrac{1}{2}\)
Vậy \(\dfrac{1}{5}+\dfrac{1}{14}+\dfrac{1}{28}+\dfrac{1}{44}+\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{97}< \dfrac{1}{2}\) \((đpcm)\)
Chứng tỏ B=1/5+1/14+1/28+1/44+1/61+1/85+1/97<1/2
Các bạn giúp nhanh mình nhé mình đang cần gấp cảm ơn các bạn nhiều
chứng minh: 1/5 + 1/14+1/28 +1/44 + 1/61+1/85+1/97 <1/2
giúp mình nha!!!! cần gấp
Chứng minh rằng : 1/5 + 1/14 + 1/28 + 1/44 + 1/61 + 1/85 < 1/2
Đặt A=15+114+128+144+161+185+197
Ta có:
A=15+(114+128+144)+(161+185+197)
A<15(114.3)+(161.3)
A<15+314+361
A<15+312+120
A<15+14+120
⇒A<12
Vậy 15+