PTĐTTNT :
`-(x+2)+3(x^2-4)`
PTĐTTNT (x + 2)(x+3)(x+4)(x+5) – 8
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-8\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)\(=\left(x^2+7x+11-1\right)\left(x^2+7x+11+1\right)-8\)
\(=\left(x^2+7x+11\right)^2-9\)
\(=\left(x^2+7x+11-3\right)\left(x^2+7x+11+3\right)=\left(x^2+7x+8\right)\left(x^2+7x+14\right)\)
PTĐTTNT
(x+2)(x+3)(x+4)(x+5)-24
(x+2)(x+3)(x+4)(x+5)-24
= [(x+2)(x+5)][(x+3)(x+4)] -24
=(x^2+7x+10)(x^2+7x+12)-24
thay x^2+7x+11=y
=> (y-1)(y+1)-24=y^2-1^2-24=y^2-25=(y-5)(y+5)
= (x^2+7x+11-5)(x^2+7x+11+5)=(x^2+7x+6)(x^2+7x+16)=(x^2+x+6x+6)(x^2+7x+16)=[x(x+1)+6(x+1)]((x^2+7x+16)=(x+1)(x+6)(x^2+7x+16)
(x + 2)(x + 3)(x + 5)(x + 7) - 24
= [(x + 2)(x + 5)][(x + 3)(x + 4)] - 24
=(x2 + 7x + 10)(x2 + 7x +12) - 24
Đặt x2 + 7x + 11 = t ; ta có:
(t - 1)(t + 1) - 24
= t2 - 12 - 24
= t2 - 25
= (t - 5)(t + 5)
Thay t = x2 + 7x + 11 ta được:
(x2 + 7x + 11 - 5)(x2 + 7x +11 + 5)
= (x2 + 7x + 6)(x2 + 7x + 16)
= (x + 1)(x + 6)(x2 + 7x + 16)
Chúc bn học tốt
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+10+2\right)-24\)( * )
Đặt \(t=x^2+7x+10\), khi đó (*) trở thành:
\(t\left(t+2\right)-24\)
\(=t^2+2t-24\)
\(=\left(t-4\right)\left(t+6\right)\)
Thay \(t=x^2+7x+10\) vào, ta được:
\(\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
Vậy ...
PTĐTTNT
(x+1)(x+2)(x+3)(x+4) - 24
(x + 1)(x + 2)(x + 3)(x + 4) - 24
= [(x + 1)(x + 4)][(x + 2)(x + 3)] - 24
= (x2 + 4x + x +4)(x2 + 3x + 2x + 12) - 24
= (x2 + 5x + 4)(x2 + 5x + 12) - 24
Đặt t = x2 + 5x + 8
Ta có: x2 + 5x + 4 = x2 + 5x + 8 - 4 (1)
x2 + 5x + 12 = x2 + 5x + 8 + 4 (2)
Thay t = x2 + 5x + 8 vào (1) và (2), ta có:
⇒ (t - 4)(t + 4) - 24
= t2 - 16 - 24
= t2 - 40
= (t - \(\sqrt{40}\))(t + \(\sqrt{40}\))
= (x2 + 5x + 8 - \(\sqrt{40}\))(x2 + 5x + 8 + \(\sqrt{40}\))
PTĐTTNT
(x+1)(x+2)(x+3)(x+4) + 1
\(\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
\(=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1\)
\(=\left(x^2+5x+4+1\right)^2\)
\(=\left(x^2+5x+5\right)^2\)
x3 + x2 + 4
PTĐTTNT
Ta được kết quả :
(x+2)(x2-x+2)
PTĐTTNT
x3 - x2 - 4
PTĐTTNT: x4+4x3+6x2+4x+5
Ta có tổng quát: \(\left(ax^2+bx+c\right)\)\(\left(mx^2+nx+p\right)\)\(\circledast\)
-Nhân ra ta được: \(amx^4+\left(an+bm\right)x^3+\left(ap+bn+cm\right)x^2+\left(bp+cn\right)x+cp\)
-Áp dụng phương pháp hệ số bất định, ta có:
am=1
an+bm=4 (1)
ap+bn+cm=6 (2)
bp+cn=4 (3)
cp=5
-Xét a=m=1 và c=1, p=5
thay vào (1), ta được: n+b=4 (4)
thay vào (3), ta được: n+5b=4 (5)
từ (4),(5)\(\Rightarrow\)n=4 và b=0
giờ thay tất cả vào phương trình (3), ta được: 5+0+1=6 (T/M)
\(\Rightarrow\)Thay vào\(\circledast\), ta được: \(\left(x^2+1\right)\left(x^2+4x+5\right)\)
Cách 2: Ta tách \(6x^2\) thành \(5x^2+x^2\)
ta được: \(x^4+4x^3+5x^2+x^2+4x+5\)
\(\Leftrightarrow x^2\left(x^2+4x+5\right)+\left(x^2+4x+5\right)\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+4x+5\right)\)
PTĐTTNT
x^4-3x^3-6x^2+3x+1
PTĐTTNT:
a) x^3+4x^2-29x+24
b) x^6+3x^5+4x^4+4x^3+4x^2+3x+1
c)x^12+1
a) x3 + 4x2 - 29x + 24
= x3 - 3x2 + 7x2 - 21x - 8x + 24
= x2(x-3) + 7x(x-3) - 8(x-3)
= (x-3)(x2+7x-8)
=(x-3)(x2+8x-x-8)
= (x-3)[(x2+8x)-(x+8)]
= (x-3)[x(x+8)-(x+8)]
= (x-3)(x+8)(x-1)