Cho tam giác ABC,Gọi M là trung điểm của BC
CMR:\(AM< \frac{AB+AC}{2}\)
cho tam giác ABC . GỌI M là trung điểm của BC . chứng minh rằng AM<\(\frac{AB+AC}{2}\)
trong sbt toán 7 tập 2 bạn tham khảo được đó
cho tam giác abc vuông tại a
m là trung điểm bc
cmr ma= 1/2 bc
p/s không kẻ thêm hình ạ
Cái này bạn áp dụng định lí của lớp 9 là ra
mà nếu không áp dụng cái đó thì chỉ có cách kẻ thêm hình mới làm được thôi
Cho tam giác ABC, gọi M là trung điểm của BC. Chứng minh rằng \(\dfrac{AB+AC-BC}{2}\) < AM < \(\dfrac{AB+AC}{2}\)
cho tam giác ABC gọi M là trung điểm của BC; CMR: AM < (AB + AC)/2
Trên tia đối của tia MA, lấy K sao cho MK = MA
Trong tam giác AKC, AK < KC + AC (1)
Do AM = MK => M là trung điểm AK => AM = MK = AK/2 => 2AM = 2MK = AK (2)
Xét tam giác ABM = tam giác KCM (c-g-c) => KC = AB (3)
Từ (1); (2) và (3) => 2AM < AB + AC => AM < (AB + AC)/2
Cho tam giác ABC có AB = c ; AC = b . Gọi M là trung điểm của BC. CMR : \(AM< \frac{b+c}{2}\)
Trên tia đối của tia MA lấy điểm D sao cho MD=MA
Xét \(\Delta AMB\)và \(\Delta DMC\):
MB=MC(gt)
\(\widehat{AMB}=\widehat{DMC}\)(đối đỉnh)
BM=CM(gt)
=> \(\Delta AMB=\Delta DMC\left(c.-g-c\right)\)
=> DC=AB=c
Xét \(\Delta ACD\)có: AD<AC+DC
=> 2AM<b+c
=> \(AM< \frac{b+c}{2}\)
=> Đpcm
P/s:Phần này là phần BĐT tam giác ý, dễ mà:>
Cho tam giác ABC có D , E lần lượt là trung điểm của các cạnh BC , AB . Gọi G là trọng tâm của tam giác ABC. Trên tia AG lấy điểm M sao cho G là trung điểm của AM
a.Chứng minh GA = DM : tam giác BDM = tam giác CBG
b.Tính BM theo CE
c.Chứng minh AD < \(\frac{AB+AC}{2}\)
Cho tam giác ABC có AB = c ; AC = b . Gọi M là trung điểm của BC. CMR : AM nhỏ hơn \(\frac{b+c}{2}\)
bạn kéo dài tia AM và lấy H sao cho AM=HM
bạn xét tam giác AMB= tam giác CMH =>AB=CH
xét tam giác ACH coa AH<AC +CH=> AH<AC+AB =>AH/2<AC+AB/2=>AM<b+c/2
Trên tia đối AM lấy N sao cho AM = MN
Xét tam giác BMN và tam giác AMC
Ta có: NM= MA (gt)
\(B\widehat{M}N=A\widehat{MC}\)(đối đỉnh)
BM = MC (M là trung điểm BC)
=> tam giác BMN = tam giác CMA (c-g-c)
=> BN = AC ; MN = MA (tương ứng)
=> NA = 2MA
Trong tam giác ABN, ta có:
AN < AB + BN (bất đẳng thức)
hay 2MA < AB + AC
MA < (AB+AC)/2
Vậy \(MA< \frac{c+b}{2}\)
Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: \(\frac{AB+AC-BC}{2}\)<AM<\(\frac{AB+AC}{2}\)
- CM : AM < (AB+BC):2
Tren tia AM lay D / M la trung diem AD
cm tam giac ABM = tam giac MCD ( c-g-c)--> AB= CD
ta co : AD<AC+CD ( bdt trong tam giac ACD)
ma AD=2AM ( M la trung diem AD) va AB= CD ( cmt)
nen 2AM< AC+AB
--> AM < ( AC+AB):2
- cm ( AB+AC-BC):2 < AM
ta co : AB < AM+BM ( bdt trong tam giac ABM )
AC< AM+MC ( bdt trong tam giac AMC )
==> AB+AC < AM+BM+AM+MC
----> A
cho tam giác abc nhọn (ab < ac ) gọi m là trung điểm của bc . trên tia am lấy điểm n sao cho m là trung điểm của an
a, chứng minh tam giác am b = tam giác nmc
b, vẽ cd vuông góc với ab ( d thuộc ab ) so sánh góc abc và góc bcn . tính góc dcn
c, vẽ ah vuoogn góc với bc ( h thuộc bc ) trên tia đối của tia ha lấy điểm i sao cho hi = ha . chứng minh bi = cn
a) Xét ΔAMB và ΔNMC có
MA=MN(gt)
\(\widehat{AMB}=\widehat{NMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔNMC(c-g-c)
b) Ta có: ΔAMB=ΔNMC(cmt)
nên \(\widehat{ABM}=\widehat{NCM}\)(hai góc tương ứng)
hay \(\widehat{ABC}=\widehat{BCN}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//NC(Dấu hiệu nhận biết hai đường thẳng song song)
mà CD⊥AB(gt)
nên CD⊥CN
hay \(\widehat{DCN}=90^0\)
c) Xét ΔABH vuông tại H và ΔIBH vuông tại H có
BH chung
HA=HI(gt)
Do đó: ΔABH=ΔIBH(hai cạnh góc vuông)
Suy ra: AB=IB(hai cạnh tương ứng)
mà AB=CN(ΔAMB=ΔNMC)
nên IB=CN(đpcm)