Những câu hỏi liên quan
PA
Xem chi tiết
LC
28 tháng 4 2019 lúc 21:59

\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2011.2013}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{2013}\right)\)

\(A=\frac{1}{2}.\frac{2012}{2013}\)

\(A=\frac{1006}{2013}\)

Bình luận (0)
H24
28 tháng 4 2019 lúc 22:00

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2011.2013}\)

\(A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{2013}\right)\)

\(A=\frac{1}{2}.\frac{2012}{2013}\)

\(A=\frac{1006}{2013}\)

Bình luận (0)
TN
28 tháng 4 2019 lúc 22:15

A = 1/1. x 1/3 + 1/3 x 1/5 + 1/5 x 1/7 x.....+1/2011 x 1/2013

A=1/1 x 1/2013(bạn triệt tiêu 1/3 ,1/5 ,1/7,1/2011 nha )

A =1/2013 

Bình luận (0)
XM
Xem chi tiết
AN
8 tháng 11 2017 lúc 10:12

\(A=\frac{1^2}{1.3}+\frac{2^2}{3.5}+...+\frac{1006^2}{2011.2013}\)

\(\Leftrightarrow4A=\frac{2^2.1^2}{2^2-1}+\frac{2^2.2^2}{4^2-1}+...+\frac{2^2.1006^2}{2012^2-1}\)

\(=1006+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2011.2013}\right)\)

\(=1006+\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)

\(=1006+\frac{1}{2}\left(1-\frac{1}{2013}\right)=\frac{2026084}{2013}\)

\(\Rightarrow A=\frac{506521}{2013}\)

Bình luận (0)
TP
Xem chi tiết
VT
8 tháng 9 2016 lúc 8:18

\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)

  \(=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}-\frac{1}{4.6}-\frac{1}{6.8}-\frac{1}{8.10}\right)\)

  \(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{8}-\frac{1}{10}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)

\(=\frac{4}{9}-\frac{1}{5}\)

\(=\frac{11}{45}\)

 

Bình luận (1)
LN
Xem chi tiết
MA
7 tháng 9 2016 lúc 22:32

\(A=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)

\(A=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)

\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(A=\frac{4}{9}-\frac{1}{5}=\frac{11}{45}\)

Bình luận (0)
HG
7 tháng 9 2016 lúc 22:33

\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)

\(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)

\(S=\frac{1}{2}\left(1-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{10}\right)\)

\(S=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(S=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)

\(S=\frac{4}{9}-\frac{1}{5}\)

\(S=\frac{11}{45}\)

Bình luận (0)
LT
6 tháng 12 2016 lúc 9:11

\(\frac{x}{2^2}\)+\(\frac{x}{2^3}\) +\(\frac{x}{2^4}\) =\(\frac{x}{3^2}\) +\(\frac{x}{3^3}\) +\(\frac{x}{3^4}\) là x =

Bình luận (0)
VT
Xem chi tiết
TT
4 tháng 5 2016 lúc 20:26

 nhung ma ko cothoi gian giai

Bình luận (0)
MX
4 tháng 5 2016 lúc 20:27

\(S1=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)

\(S1=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{101}=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)

\(S2=\frac{5}{1.3}+\frac{5}{3.5}+....+\frac{5}{99.101}\)

\(S2=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-.....-\frac{1}{101}\right)=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{250}{101}\)

Bình luận (0)
VT
4 tháng 5 2016 lúc 20:48

làm tắt thế ai mà hỉu đc

Bình luận (1)
TM
Xem chi tiết
LP
5 tháng 1 2016 lúc 16:33

\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(S=\frac{2}{2}.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)

\(S=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(S=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(S=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)

\(S=\frac{1}{2}.\frac{100}{101}=\frac{50}{101}\)

Bình luận (0)
MT
5 tháng 1 2016 lúc 16:17

nhân S cho 2 

Công thức \(\frac{2}{x.\left(x+2\right)}=\frac{1}{x}-\frac{1}{x+2}\)

Bình luận (0)
HY
5 tháng 1 2016 lúc 16:27

\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(S=\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{99}-\frac{1}{101}\right).\frac{1}{2}\)

\(S=\left(\frac{1}{1}-\frac{1}{101}\right).\frac{1}{2}\)

\(S=\frac{100}{101}.\frac{1}{2}\)

\(S=\frac{50}{101}\)

Bình luận (0)
PT
Xem chi tiết
NN
2 tháng 5 2015 lúc 20:32

 

Đặt biểu thức trên là A, ta có:

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}\)

\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}\)

\(2A=\frac{1}{1}-\frac{1}{15}\)

\(2A=\frac{14}{15}\Rightarrow A=\frac{14}{15}:2\Rightarrow A=\frac{7}{15}\)

Sửa lại giúp mình, cái này mới đúng nhé!

 

Bình luận (0)
NH
2 tháng 5 2015 lúc 20:23

= 1 / 1 - 1/3 + 1 / 5 -1/7 + ....... +  1/13 - 1/15

= ( 1/1 - 1/15 ) 

= 1-1/15

= 14/15

 1 đ-ú- n - g

Bình luận (0)
BM
19 tháng 3 2017 lúc 20:59

\(\frac{14}{15}\)

Bình luận (0)
H24
Xem chi tiết
H24
8 tháng 3 2017 lúc 11:02

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003.2005}\)

\(2A=2.\left(\frac{1}{1.3}+\frac{1}{2.5}+\frac{1}{5.7}+...+\frac{1}{2003.2005}\right)\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2003.2005}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\)

\(2A=1-\frac{1}{2005}\)

\(2A=\frac{2004}{2005}\)

\(A=\frac{2004}{2005}:2\)

\(A=\frac{1002}{2005}\)

Ủng hộ tk Đúng nha mọi người !!! ^^ 

Bình luận (0)
ML
8 tháng 3 2017 lúc 11:10

Đặt B = \(\frac{1}{1.3}\)\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003.2005}\Rightarrow2B=2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003.2005}\right)\)\(\Rightarrow2B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2003.2005}\Rightarrow2B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2003}-\frac{1}{2005}\)

\(\Rightarrow2B=\frac{1}{3}-\frac{1}{2005}=\frac{2012}{6015}\Rightarrow B=\frac{2012}{6015}:2=\frac{1001}{6015}\)

Bình luận (0)
LD
8 tháng 3 2017 lúc 11:50

Ta có: \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{2003.2005}\)

             \(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{2003.2005}\right)\)

               \(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{2003}-\frac{1}{2005}\right)\)

               \(=\frac{1}{2}\left(1-\frac{1}{2005}\right)\)

                 \(=\frac{1}{2}.\frac{2004}{2005}=\frac{1002}{2005}\)

Bình luận (0)
R6
Xem chi tiết