\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2011.2013}\)
\(\Rightarrow2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2011.2013}\)
\(\Rightarrow2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2011}-\frac{1}{2013}\)
\(\Rightarrow2S=1-\frac{1}{2013}\)
\(\Rightarrow2S=\frac{2012}{2013}\)
\(\Rightarrow S=\frac{2012}{2013}\div2\)
\(\Rightarrow S=\frac{1006}{2013}\)
\(2S=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{2011\cdot2013}\)
\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2011}-\frac{1}{2013}\)
\(2S=1-\frac{1}{2013}\)
\(2S=\frac{2012}{2013}\)
\(S=\frac{2012}{2013}\div2=\frac{1006}{2013}\)
#Louis
\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2011.2013}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2011.2013}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2013}\right)\)
\(=\frac{1}{2}.\frac{2012}{2013}\)
\(=\frac{1006}{2013}\)
Study well ! >_<