Tìm x
1/ 1.4+ 1/ 4.7+ 1/ 7.10+....+1/ x.( x+ 3)= 672/ 2017
Tìm x:
1/1.4 + 1/4.7 + 1/7.10 + ... + 1/x.(x+3)= 667/2002
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x.\left(x+3\right)}=\frac{667}{2002}\)
\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{667}{2002}\)
\(=\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{667}{2002}\)
\(=\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{x+3}\right)=\frac{667}{2002}\)
\(\frac{1}{1}-\frac{1}{x+3}=\frac{667}{2002}:\frac{1}{3}\)
\(\frac{1}{1}-\frac{1}{x+3}=\frac{2001}{2002}\)
\(\frac{1}{x+3}=1-\frac{2001}{2002}\)
\(\frac{1}{x+3}=\frac{1}{2002}\)
\(\frac{1}{x}=\frac{1}{2002-3}\)
\(\frac{1}{x}=\frac{1}{1999}\)
Vậy x = 1999
tìm x
1/1.4+1/4.7+1/7.10+....+1/x.(x+3)=6/19
đặt VT là A ta có:
\(3A=3\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{x\left(x+3\right)}\right)\)
\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{6}{19}\)
\(3A=1-\frac{1}{x+3}\)
\(A=\left(1-\frac{1}{x+3}\right):3\)
thay A vào VT ta đc:\(\left(1-\frac{1}{x+3}\right):3=\frac{6}{19}\)
\(1-\frac{1}{x+3}=\frac{18}{19}\)
\(\frac{1}{x+3}=\frac{1}{19}\)
=>x+3=19
=>x=16
Tìm x:
1/1.4 + 1/4.7 + 1/7.10 + ... + 1/x.(x+3)= 667/2002
\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+.......+\dfrac{1}{x\left(x+3\right)}=\dfrac{125}{376}\)(x ϵ N*)
Tìm x :
\(\Leftrightarrow\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{375}{376}\)
\(\Leftrightarrow1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{375}{376}\)
\(\Leftrightarrow1-\dfrac{1}{x+3}=\dfrac{375}{376}\)
\(\Leftrightarrow\dfrac{1}{x+3}=1-\dfrac{375}{376}=\dfrac{1}{376}\)
\(\Rightarrow x+3=376\)
\(\Rightarrow x=373\)
\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{x.\left(x+3\right)}=\dfrac{34}{103}\)
Tìm x
\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{34}{103}\)
\(\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{34}{103}\)
\(\dfrac{1}{3}.\left(1-\dfrac{1}{x+3}\right)=\dfrac{34}{103}\)
\(1-\dfrac{1}{x+3}=\dfrac{34}{103}:\dfrac{1}{3}=\dfrac{34}{103}.3\)
\(1-\dfrac{1}{x+3}=\dfrac{102}{103}\)
\(\dfrac{1}{x+3}=1-\dfrac{102}{103}=\dfrac{103}{103}-\dfrac{102}{103}\)
\(\dfrac{1}{x+3}=\dfrac{1}{103}\)
\(\Rightarrow x+3=103\)
\(x=103-3\)
\(x=100\)
Vậy x = 100
Tìm x biết : (1/1.4+1/4.7+1/7.10+....+1/97.100) = 0,33.x/2009
tìm x thuộc N*
a)1/1.4 + 1/4.7 +1/7.10 +........+ 1/x.(x+3) = 49/148
Đặt \(A=\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)
\(3\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{\left(x+3\right)}\right)=3\cdot\frac{49}{148}\)
\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{x\left(x+3\right)}=\frac{147}{148}\)
\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{147}{148}\)
\(1-\frac{1}{x-1}=\frac{147}{148}\)
\(\frac{1}{x-1}=1-\frac{147}{148}\)
\(\frac{1}{x-1}=\frac{1}{148}\)
\(\Rightarrow x-1=148\)
\(\Leftrightarrow x=148+1\)
\(\Leftrightarrow x=149\)
Vậy x=149
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x.\left(x+3\right)}=\frac{49}{148}\)
\(\Rightarrow\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{49}{148}\)
\(\Rightarrow\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{49}{148}\)
\(\Rightarrow\frac{1}{3}.\left(1-\frac{1}{x+3}\right)=\frac{49}{148}\)
\(\Rightarrow1-\frac{1}{x+3}=\frac{49}{148}:\frac{1}{3}\)
\(\Rightarrow1-\frac{1}{x+3}=\frac{147}{148}\)
\(\Rightarrow\frac{1}{x+3}=1-\frac{147}{148}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{148}\)
\(\Rightarrow x+3=148\)
\(\Rightarrow x=148-3\)
\(\Rightarrow x=145\)
Vậy x = 145
_Chúc bạn học tốt_
sao lại - mà ko phải là x vậy bn
1/1.4+1/4.7+1/7.10+...+1/x(x+3)=6/19
\(\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{6}{19}\)
\(\frac{1}{3}\left(1-\frac{1}{x+3}\right)=\frac{6}{19}\)
\(\frac{1}{3}\times\frac{x+3-1}{x+3}=\frac{6}{19}\)
\(\frac{x+3-1}{x+3}=\frac{6}{19}\div\frac{1}{3}\)
\(\frac{x+2}{x+3}=\frac{18}{19}\)
x = 16
1/1.4 + 1/4.7 + 1/7.10 ... + 1/x.(x+3) = 125/376
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{125}{376}\)
=>\(3\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}\right)=3.\frac{125}{376}\)
=>\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{375}{376}\)
=>\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{375}{376}\)
=>\(1-\frac{1}{x+3}=\frac{375}{376}\)
=>\(\frac{1}{x+3}=1-\frac{375}{376}\)
=>\(\frac{1}{x+3}=\frac{1}{376}\)
=>x+3=376
=>x=376-3
=>x=373
Vậy x=373
1/1+4 +1/4×7 +1/7×10+.....+1/x×(x+3)=16/49