Những câu hỏi liên quan
H24
Xem chi tiết
AF
Xem chi tiết
TT
Xem chi tiết
TT
25 tháng 10 2018 lúc 11:04

xin lỗi nha là yy chứ ko phải là yx đâu nha

Bình luận (0)
KV
25 tháng 10 2018 lúc 11:13

Chon x = y = 2p - 1 ta có : xx + yy = 2.xx = 2.( 2p - 1 2p - 1  = 2( p - 1 ). 2p-1+1

Vì 2 \(⋮\)p và p là số nguyên tố theo định lý Fecma nhỏ , suy ra :

    2p-1 \(\equiv\)1 ( mod p ) => ( p - 1 ) . 2p-1 + 1 = 0 ( mod p )

    => \(\exists k\inℕ^∗\)  sao cho ( p - 1 ) . 2p-1 + 1 = kp

Bởi thế , từ ( 1 ) ta thấy  khi chọn z = 2k thì ta có :

   xx + yy = zp , với p là số nguyên tố lẻ

Bình luận (0)
HN
Xem chi tiết
ZZ
24 tháng 7 2020 lúc 22:11

Không mất tính tổng quát giả sử rằng \(\left|x\right|\ge\left|y\right|\Rightarrow x^2\ge y^2\)

\(\frac{1}{7}=\frac{1}{x^2}+\frac{1}{y^2}\le\frac{1}{y^2}+\frac{1}{y^2}=\frac{2}{y^2}\Rightarrow y^2\le14\Rightarrow\left|y\right|\le3\)

Mặt khác áp dụng BĐT Cauchy Schwarz:

\(=\frac{1}{7}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{4}{x^2+y^2}\Rightarrow x^2+y^2\ge28\Rightarrow x^2\ge14\Rightarrow\left|x\right|\ge3\)

Bạn thay y={1;2;3;-1;-2;-3} vào rùi tìm x nhá cái BĐT kia làm màu cho đẹp thui :3

Bình luận (0)
 Khách vãng lai đã xóa
VH
Xem chi tiết
FZ
Xem chi tiết
AM
25 tháng 7 2015 lúc 17:05

Lớp 6 đã học đẳng thức đâu

Bình luận (0)
SN
Xem chi tiết
PM
25 tháng 7 2015 lúc 21:40

để mk search mạng xem sao

Bình luận (0)
VH
Xem chi tiết
TN
8 tháng 5 2016 lúc 22:57

C1 ta có 3x^2 + 7y^2 = 2002 

<=> 3x^2=2002-7y^2 

<=> 3x^2=7(286-y^2) 

mặt khác (3;7)=1(nguyên tố cùng nhau) => x chia hết cho 7 <=> x^2 chia hết cho 7 

từ đó suy ra (286-y^2) chia hết cho 7 

<=> [287-(y^2+1) ] chia hết cho 7 

<=> y^2+1 chia hết cho 7 

giã sử y=7k +r (với 0<=r<=6 

=>y^2+1=(7k+r)^2+1=7(7k^2+2kr)+r^2 +1 

thử lại ta thấy với r =0;1;2;3;4;5;6 thì r^2 +1 o chia hết cho 7 => y^2+1 o chia hết cho 7 

=>đpcm
 

Bình luận (0)
TN
8 tháng 5 2016 lúc 22:57

cách 2 
giữ 3x^3+7y^2=2002 (1) 

có nghiệm nguyên x,y 

từ (1) => x^2 chia hết cho 7 => x chia hết cho 7 => x => x^2=49 

=> x^2 có dạng 49t^2 (t thuộc Z) 

thay x^2=49t^2 vào (1) 

và nhận thấy y^2>=1 

=> 147t^2 <=1995 

=> t^2<=13 

-> t^2 = 1,4,9 

với t^2=1 ...=> x^2 =49 => y^2 =279,y#z 

t^2 =4 =>x^2=196 => y^2=258 (y#Z) 

t^=9 => x^2 =441 -> y^2 =223)(y#Z) 

đpcm

Bình luận (0)
TM
Xem chi tiết