cho x,y ko âm thỏa mãn x^3+y^3=2
CMR x^2+y^2 < hoặc=2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho x,y ko âm thỏa mãn x^3+y^3=2
CMR x^2+y^2 < hoặc=2
cho x,y ko âm thỏa mãn x^3+y^3=2
CMR x^2+y^2 < hoặc=2
cho x,y ko âm thỏa mãn x^3+y^3=2
CMR x^2+y^2 < hoặc=2
cho x,y ko âm và x^3+y^3=2 CM x^2+y^2<hoặc=2
Hai chữ số tận cùng của 51^51
2. Trung bình cộng của các giá trị của x thỏa mãn: (x - 2)^8 = (x - 2)^6
3. Số x âm thỏa mãn: 5^(x - 2).(x + 3) = 1
4. Số nguyên tố x thỏa mãn: (x - 7)^x+1 - (x - 7)^x+11 = 0
5. Tổng 3 số x,y,y biết: 2x = y; 3y = 2z và 4x - 3y + 2z = 36
6. Tập hợp các số hữu tỉ x thỏa mãn đẳng thức: x^2 - 25.x^4 = 0
7. Giá trị của x trong tỉ lệ thức: 3x+2/5x+7 = 3x-1/5x+1
8. Giá trị của x thỏa mãn: (3x - 2)^5 = -243
9. Tổng của 2 số x,y thỏa mãn: !x-2007! = !y-2008! < hoặc = 0
10. số hữu tỉ dương và âm x thỏa mãn: (2x - 3)^2 = 16
11. Tập hợp các giá trị của x thỏa mãn đẳng thức: x^6 = 9.x^4
12. Số hữu tỉ x thỏa mãn: |x|. |x^2+3/4| = X
có khùng hk vậy hùng tự đăng tự giải ls
1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51
Vậy 2 số tận cùng của 51^51 là 51
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3
Vậy trung bìng cộng là 2
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6
Do x là số nguyên tố => x=7 TM
5)3y=2z=> 2z-3y=0
4x-3y+2z=36=> 4x=36=> x=9
=> y=2.9=18=> z=3.18/2=27
=> x+y+z=9+18+27=54
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7)
Nhân ra kết quả cuối cùng là x=3
8)ta có (3x-2)^5=-243=-3^5
=> 3x-2=-3 => x=-1/3
9)Câu này chưa rõ ý bạn muốn hỏi!
10)2x-3=4 hoặc 2x-3=-4
<=> x=7/2 hoặc x=-1/2
11)x^4=0 hoặc x^2=9
=> x=0 hoặc x=-3 hoặc x=3
anh đang chia sẻ kiến thức đóa à
Cho 3 số thực không âm x ,y ,z thỏa mãn x + y + z = 2 . Chứng minh rằng : x + 2y + z >= (2 - x)(2 - y)(2 - z)
Bất đẳng thức cần chứng minh tương đương:
\(y+2\ge\left(2-x\right)\left(2-z\right)\left(2-y\right)\).
Theo bất đẳng thức AM - GM: \(\left(2-x\right)\left(2-z\right)\le\dfrac{\left(4-x-z\right)^2}{4}=\dfrac{\left(2-y\right)^2}{4}\).
Do đó ta chỉ cần chứng minh:
\(y+2\ge\dfrac{\left(2-y\right)^3}{4}\).
Mặt khác, bđt trên tương đương: \(\dfrac{y\left[\left(y-3\right)^2+7\right]}{4}\ge0\) (luôn đúng).
Do đó bđt ban đầu cũng đúng.
Đẳng thức xảy ra khi y = 0; x = z = 1.
Cho x,y là các số thực không âm thỏa mãn x+y lớn hơn hoặc bằng 1 .
Chừng minh rằng x2y2(x2+y2) bé hơn hoặc băng 1/32
Cho các số không âm x,y thỏa mãn\(x^3+y^3\) = 2 .CMR : \(x^2+y^2\le2\)
Áp dụng BĐT Bunhiacôpxki , ta có :
\(\left(x^2+y^2\right)^2=\left(\sqrt{x}.\sqrt{x^3}+\sqrt{y}.\sqrt{y^3}\right)^2\) \(\le\left(x+y\right)\left(x^3+y^3\right)=2\left(x+y\right)\)
\(\Leftrightarrow\left(x^2+y^2\right)^4\le4\left(x+y\right)^2=4\left(1.x+1.y\right)^2\le4\left(1+1\right)\left(x^2+y^2\right)=8\left(x^2+y^2\right)\)
\(\Leftrightarrow\left(x^2+y^2\right)^3\le8\)
\(\Leftrightarrow x^2+y^2\le2\left(\text{đ}pcm\right)\)
Dấu "=" xảy ra khi x = y = 1
cho x,y thỏa mãn
(x-y)(x^2+y^2+xy+3)=3(x^2+y^2)+2.
Tìm GTNN của P=x^2+y^2+2xy-2x-6y+2020
làm nhanh cho mình đc ko ạ.Mình sắp đi học rồi