Những câu hỏi liên quan
NL
Xem chi tiết
XO
3 tháng 6 2019 lúc 19:39

Ta có : \(\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}\)

\((1-\frac{1}{2})+(1-\frac{1}{3})+...+(1-\frac{99}{100})\)(100 cặp số )

\(\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)(100 số hạng 1)

\(1\times100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{100}\right)\)

\(100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)

=> 100-(1+1/2+1/3+...+1/100) = 1/2+2/3+3/4+...+99/100

Bình luận (0)
NL
3 tháng 6 2019 lúc 19:45

Bạn cố giải cho mình dễ hiểu hơn ko?

Bình luận (0)
LP
Xem chi tiết
H24
Xem chi tiết
DV
28 tháng 7 2015 lúc 18:45

\(A

Bình luận (0)
DH
28 tháng 7 2015 lúc 18:56

việt giỏi nhỉ

lớp mấy dôd

Bình luận (0)
HM
Xem chi tiết
KS
22 tháng 11 2018 lúc 20:08

Không spam nha. Chương trình game xin tặng chương trình học online. Nhằm mục đích game được nhiều người chơi.

Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.

Link như sau vào google hoặc cốc cốc để tìm kiếm:

https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao

Copy cũng được nha

Bạn hack nick mình thu ib dưới vs nha giúp mk chuyện này:))

Bình luận (0)
PL
Xem chi tiết
BB
Xem chi tiết
TC
18 tháng 7 2021 lúc 20:47

undefined

Bình luận (0)
H24
18 tháng 7 2021 lúc 20:53

<3 XD

Bình luận (0)
TQ
Xem chi tiết
NN
25 tháng 4 2023 lúc 9:56

b\()\)

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2.3 + 1/3.4 +... + 1/99.100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/99 + 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 3/4 - 1/100 < 3/4

Bình luận (0)
NN
25 tháng 4 2023 lúc 9:57

Tương tự như vậy với câu a\()\)

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2.3 + 1/3.4 +... + 1/99.100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/99 + 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 3/4 - 1/100 < 1/2

Bình luận (0)
PG
Xem chi tiết
L3
Xem chi tiết
OY
27 tháng 7 2021 lúc 15:49

a) Gọi ƯCLN(12n+1,30n+2) là d

12n+1⋮d  ⇒ 60n+5⋮d 

30n+2⋮d  ⇒ 60n+4⋮d 

(60n+5)-(60n+4)⋮d 

1⋮d 

Vậy \(\dfrac{12n+1}{30n+2}\) là ps tối giản

Bình luận (0)
OY
27 tháng 7 2021 lúc 15:52

b) Đặt A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\)

Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A< 1-\dfrac{1}{100}\)

\(A< 1-\dfrac{1}{100}< 1\left(đpcm\right)\)

Bình luận (0)