Tìm x,y
\(\left|x-y\right|^{2017}+\left|x+y\right|^{2018}=0\)
Tìm x,y thỏa mãn:
a)\(^{\left|x+2y\right|+\left|4y-3\right|\le0}\)
b)\(\left|x-y-5\right|+2017\left(y-11\right)^{2018}\le0\)
c)\(^{\left(x+y\right)^{2020}+2018.\left|y-1\right|=0}\)
cho x,y,z thỏa mãn \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\left(\frac{1}{x+y+z}\right)=1\)
tìm B=\(\left(x^{2016}+y^{2016}\right)\left(y^{2017}+z^{2017}\right)\left(z^{2018}+x^{2018}\right)\)
Tìm x,y biết
\(\left|x-2017\right|+\left|x-2018\right|+\left|y-2019\right|+\left|x+2020\right|=3\)
Tìm x,y,z biết:
\(\left|x-2017\right|+\left|2018-y\right|+\left|x+2019\right|=0\)
Ta có:\(|x-2017|\ge0\)
\(|2018-y|\ge0\)
\(|z+2019|\ge0\)(hơi khác so vs đề của bạn nhưng hình như đề bạn sai)
Khi đó:\(|x-2017|+|2018-y|+|z+2019|=0\)Khi\(\hept{\begin{cases}x-2017=0\\2018-y=0\\z+2019=0\end{cases}}\)
Ta sẽ tính đc x = 2017, y = 2018, z = 2019
Tìm x,y biết \(\left|x-y-2\right|^{2017}+\left(x+y-8\right)^{2018}\le0\)
Tìm x, biết:
a) \(\left|x-24\right|+\left|y+8\right|=1\)
b)\(\left(x-2\right)^{10}+\left|y-2\right|=0\)
c)\(x+\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+30\right)=1240\)
d)\(x+\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+2017+2018=2018\)
Giải thích cụ thể giúp mk nha
1/Cho a,b,c thỏa mãn \(\frac{2}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Tính giá trị biểu thức M=\(\frac{a^{2017}+b^{2018}+c^{2019}}{a^{2017}b^{2018}c^{2019}}\)
2/Cho x,y,z≠0 và x+y+z=2008
Tính giá trị biểu thức P=\(\frac{x^3}{\left(x-y\right)\left(x-z\right)}+\frac{y^3}{\left(y-x\right)\left(y-z\right)}+\frac{z^3}{\left(z-y\right)\left(z-x\right)}\)
cho các số x,y thỏa mãn đẳng thức \(3x^2+3y^2+4xy+2x-2y+2=0\\ \)
tính giá trị biểu thức M=\(\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\)
Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
\(2\left(x+y\right)^2\ge0\forall x,y\)
Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)
Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được:
\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)
\(=0^{2016}+1^{2017}+0^{2018}=1\)
Vậy: M=1
\(\dfrac{\left(2017-x\right)^2-\left(2017-x\right)\left(x-2018\right)+\left(x-2018\right)^2}{\left(2017-x\right)^2+\left(2017-x\right)\left(x-2018\right)+\left(x-2018\right)^2}=\dfrac{5}{3}\)
Các bạn giải giúp mình nhé, đây là đề ôn toán hk2 lớp 8
Đặt x - 2017 = a
Phương trình trên tương đương:
\(\dfrac{\left(-a\right)^2-\left(-a\right)\left(a-1\right)+\left(a-1\right)^2}{\left(-a\right)^2+\left(-a\right)\left(a-1\right)+\left(a-1\right)^2}=\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{a^2+a^2-a+a^2-2a+1}{a^2-a^2+a+a^2-2a+1}=\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{3a^2-3a+1}{a^2-a+1}=\dfrac{5}{3}\)
\(\Leftrightarrow9x^2-9x+3=5x^2-5x+5\)
\(\Leftrightarrow4x^2-4x-2=0\)
\(\Leftrightarrow\left(x-\dfrac{1+\sqrt{3}}{2}\right)\left(x-\dfrac{1-\sqrt{3}}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1+\sqrt{3}}{2}\\\dfrac{1-\sqrt{3}}{2}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình: \(S=\left\{\dfrac{1+\sqrt{3}}{2};\dfrac{1-\sqrt{3}}{2}\right\}\)