Những câu hỏi liên quan
CC
Xem chi tiết
TB
Xem chi tiết
IA
Xem chi tiết
MT
Xem chi tiết
H24
19 tháng 1 2019 lúc 21:13

Ta có:\(|x-2017|\ge0\)

          \(|2018-y|\ge0\)

          \(|z+2019|\ge0\)(hơi khác so vs đề của bạn nhưng hình như đề bạn sai)

Khi đó:\(|x-2017|+|2018-y|+|z+2019|=0\)Khi\(\hept{\begin{cases}x-2017=0\\2018-y=0\\z+2019=0\end{cases}}\)

Ta sẽ tính đc x = 2017, y = 2018, z = 2019

Bình luận (0)
H24
Xem chi tiết
IH
Xem chi tiết
HT
Xem chi tiết
NS
Xem chi tiết
NT
4 tháng 1 2021 lúc 21:51

Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-1\right)^2\ge0\forall y\)

\(2\left(x+y\right)^2\ge0\forall x,y\)

Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi 

\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)

Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được: 

\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)

\(=0^{2016}+1^{2017}+0^{2018}=1\)

Vậy: M=1

Bình luận (0)
AH
Xem chi tiết
ND
7 tháng 5 2018 lúc 19:54

Đặt x - 2017 = a

Phương trình trên tương đương:

\(\dfrac{\left(-a\right)^2-\left(-a\right)\left(a-1\right)+\left(a-1\right)^2}{\left(-a\right)^2+\left(-a\right)\left(a-1\right)+\left(a-1\right)^2}=\dfrac{5}{3}\)

\(\Leftrightarrow\dfrac{a^2+a^2-a+a^2-2a+1}{a^2-a^2+a+a^2-2a+1}=\dfrac{5}{3}\)

\(\Leftrightarrow\dfrac{3a^2-3a+1}{a^2-a+1}=\dfrac{5}{3}\)

\(\Leftrightarrow9x^2-9x+3=5x^2-5x+5\)

\(\Leftrightarrow4x^2-4x-2=0\)

\(\Leftrightarrow\left(x-\dfrac{1+\sqrt{3}}{2}\right)\left(x-\dfrac{1-\sqrt{3}}{2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1+\sqrt{3}}{2}\\\dfrac{1-\sqrt{3}}{2}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình: \(S=\left\{\dfrac{1+\sqrt{3}}{2};\dfrac{1-\sqrt{3}}{2}\right\}\)

Bình luận (0)