Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NH
Xem chi tiết
NG
Xem chi tiết
6R
2 tháng 12 2017 lúc 12:23

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

Bình luận (0)
NB
Xem chi tiết
CH
Xem chi tiết
NL
12 tháng 8 2021 lúc 15:23

- Với \(n=2\Rightarrow P_2=2!=2=1!+1\) (đúng)

- Với \(n=3\Rightarrow\left\{{}\begin{matrix}P_3=3!=6\\2P_2+P_1+1=2.2!+1+1=6\end{matrix}\right.\) (đúng)

- Giả sử đẳng thức đúng với \(n=k\ge2\) hay:

\(P_k=\left(k-1\right)P_{k-1}+\left(k-2\right)P_{k-2}+...+P_1+1\)

Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay

\(P_{k+1}=k.P_k+\left(k-1\right)P_{k-1}+...+P_1+1\)

Thật vậy, ta có:

\(k.P_k+\left(k-1\right)P_{k-1}+...+P_1+1=k.P_k+P_k\)

\(=\left(k+1\right)P_k=P_{k+1}\) (đpcm)

Bình luận (0)
HP
Xem chi tiết
TM
4 tháng 7 2018 lúc 9:18

TH1:n=3 => 3n+2=11 là snt

TH2:n>3

+)n=3k+1(k\(\in\)N) => 3n+2=3(3k+1)+2=9k+5 là snt

+)n=3k+2(k\(\in\)N) => 3n+2=3(3k+2)+2=9k+8 là snt

Qua các trường hợp trên ta luôn có đpcm

Bình luận (0)
HV
10 tháng 9 2018 lúc 18:58

xét n=4k, 4k+1, 4k+2, 4k+3 

lưu ý : số chính phương chia 4 dư 0 hoặc 1

Bình luận (0)
BB
15 tháng 9 2023 lúc 15:58

nếu n=11 thì này là hợp số 35. đề bạn lấy ở đâu z

Bình luận (0)
CB
Xem chi tiết
H24
14 tháng 2 2016 lúc 21:35
Vì A là tích của n số nguyên tố đầu tiên nên A chia hết cho 2 và A không chia hết cho 4 (*) Giả sử A+1 là số chính phương . Đặt A+1 = m2            (m∈N) 

Vì A chẵn nên A+1 lẻ => m2 lẻ => m lẻ. 

Đặt m = 2k+1          (k∈N).

Ta có m2 = =(2k+1)2=4k2 + 4k + 1

=> A+1 = 4k2 + 4k + 1

=> A = 4k2 + 4k = 4k(k+1) chia hết cho 4. Mâu thuẫn với (*) 

Vậy A+1 không là số chính phương 

Ta có: A = 2.3.5… là số chia hết cho 3              (n>1)

=> A-1 có dạng 3x+2.        (x\(\in\)N)

Vì không có số chính phương nào có dạng 3x+2 nên A-1 không là số chính phương . 

Vậy nếu A là tích n số nguyên tố đầu tiên (n>1) thì A-1 và A+1 không là số chính phương (đpcm)

Bình luận (0)
TK
14 tháng 2 2016 lúc 21:26

Nên viết rõ ràng hơn đi, như cái chỗ Pn là J?

Bình luận (0)
NH
14 tháng 2 2016 lúc 21:27

Nên viết rõ ràng ra

Bình luận (0)
H24
Xem chi tiết
CT
Xem chi tiết
PL
Xem chi tiết