Cho đa thức f(x)=x^2+ax+b.Biết đa thức f(x) có một nghiệm là x=-3 và f(2)=5.Tính f(-2)
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
a)cho đa thức f(x)=ax+b.Tìm điều kiện của a và b để f(7)=f(2)+f(3)
b) Tìm nghiệm của P(x)=(x-2).(2x+5)
c) Tìm hệ số a của P(x)= x^4+ax^2-4.
Biết rằng, đa thức này có 1 nghiệm là -2
a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)
dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.
tại sao a7 + b = 5a + 2b lại bằng 2a = b vậy ạ
Bài 1. Tìm đa thức P(x) = x2 + ax + b. Biết rằng nghiệm của đa thức P(x) cũng là nghiệm của đa thức Q(x) = (x+2)(x-1)
Bài 2. Cho đa thức f(x) thỏa mãn f(x) + x f(-x) = x + 1 với mọi giá trị của x. Tính f(1)
Bài 3. Cho đa thức P(x) = x(x - 2) - 2x + 2m - 2015 (x là biến số, m là hằng số). Tìm m để đa thức có nghiệm.
Cho đa thức \(f\left(x\right)=x^2+ax+b\). Biết đa thức \(f\left(x\right)\)có một nghiệm là x = -3 và \(f\left(2\right)=5\). Tính \(f\left(-2\right)\)
Vì f(x) có 1 nghiệm là x=-3 nên ta có: \(f\left(-3\right)=9-3a+b=0\Rightarrow-3a+b=-9\)(1)
\(f\left(2\right)=4+2a+b=5\Rightarrow2a+b=1\)(2)
Từ (1) và (2)\(\Rightarrow-3a+b-2a-b=-9-1\Rightarrow-5a=-10\Rightarrow a=2\)
Thay a vào tính b rồi tính
1. Cho x+ y = 1998. Tính giá trị biểu thức:
x(x +5) + y(y + 5) + 2(xy - 3)
2. Cho đa thức: \(f\left(x\right)=x^2+mx-12\) (m là hằng số)
Tìm các nghiệm của đa thức f(x), biết rằng f(x) có một nghiệm là -3
3. Tìm hệ số a, b, c của đa thức \(P\left(x\right)=ax^2+bx+c\)biết P(2) = -4 và P(x) có hai nghiệm là -1 và -2
1. Cho đa thức f(x) thỏa mãn (x^2-4x+3) f(x+1)= (x-2) f(x-1). Chứng tỏ rằng đa thức f(x) có ít nhất 3 nghiệm.
2. Đa thức f(x)= ax^2-x+b, a khác 0 có nghiệm x=2. Biết rằng tổng của hệ số cao nhất và hệ số tự do là -7. Tìm a và b
1) \(\left(x^2-4x+3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)
Với \(x=1\): \(0=-1f\left(0\right)\Leftrightarrow f\left(0\right)=0\)do đó \(0\)là một nghiệm của đa thức \(f\left(x\right)\).
Tương tự xét \(x=2,x=3\)có thêm hai nghiệm nữa là \(3\)và \(2\).
2) \(f\left(2\right)=4a-2+b=0\Leftrightarrow4a+b=2\)
Tổng hệ số cao nhất và hệ số tự do là \(a+b\)suy ra \(a+b=-7\).
Ta có hệ:
\(\hept{\begin{cases}4a+b=2\\a+b=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=9\\b=-7-a\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=-10\end{cases}}\).
cho các số thực a, b, c và đa thức g(x)=x^3 + ax^2 + x + 10 có 3 nghiệm phân biệt. Biết rằng mỗi nghiệm của đa thức g(x) lại là nghiệm của đa thức f(x)=x^4 + x^3 + bx^2 + 100x + c. Tính giá trị của f(1)
a, Cho đa thức f(x) thỏa mãn f(x) - 2f(-x) = x2 - 1. Tính f(5)
b, Cho đa thức f(x) = ax2 + bx +c. Biết 3a+b=0 vá x=1 là một nghiệm của đa thức. Chứng tỏ x=2 cũng là nghiệm của đa thức f(x)
Cho đa thức f(x)=x2+ ax + b.Xác định a và b biết rằng đa thức f(x) có hai nghiệm là x=2 và x=3
Ta có: F(x) = x2 + ax + b
* F(2) = 22 + 2a + b = 0 =>
=> 4 + 2a + b = 0 (1)
* F(3) = 32 + 3a + b =0
=> 9 + 3a + b =0 (2)
- Lấy (2) - (1) , ta có:
(9 + 3a + b ) - (4+ 2a + b) = 0
=> (9-4) + (3a-2a) +(b-b) =0
=> 5+a=0
=> a= -5
- Từ 4+2a+b=0 => b= -4 - 2a
Mà a= -5
=> b = -4 - 2.(-5)
=> b= -4 + 10
=> b =6