\(\frac{x^2+9}{2x+6}+\frac{6x}{2x-6}\)
( \(\frac{x+3}{x_{ }-3}+\frac{2x^2-6}{9-x^2}+\frac{X}{x+3}\)):\(\frac{6x-12}{2x^2-18}\)a)rút gọn
\(A=\dfrac{x^2+6x+9-2x^2+6+x^2-3x}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{2\left(x-3\right)\left(x+3\right)}{6\left(x-2\right)}\)
\(=\dfrac{3x+15}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{\left(x-3\right)\left(x+3\right)}{3\left(x-2\right)}=\dfrac{x+5}{x-2}\)
tìm x biết: a)\(\frac{13}{x-1}+\frac{5}{2x-2}=\frac{6}{3x-3}\)
b)
\(\frac{1}{x-1}+\frac{-2}{3}\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x}\)
c)\(3-\frac{2}{2x-3}=\frac{2}{5}+\frac{2}{9-6x}-\frac{3}{2}\)
a) Đặt \(x-1=a\)
\(pt\Leftrightarrow\frac{13}{a}+\frac{5}{2a}=\frac{6}{3a}\)
\(\Leftrightarrow\frac{31}{2a}=\frac{6}{3a}\)
\(\Leftrightarrow\frac{31}{2}=2\)(vô lí)
Vậy pt vô nghiệm
a) \(\frac{13}{x-1}+\frac{5}{2x-2}=\frac{6}{3x-3}\)
\(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}=\frac{6}{3\left(x-1\right)}\)
\(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}=\frac{2}{x-1}\)
\(\frac{31}{2\left(x-1\right)}=\frac{2}{x-1}\)
\(\frac{31}{2}=2\)
=> không có x thỏa mãn đề bài.
b) \(\frac{1}{x-1}+\frac{-2}{3}\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x}\)
\(\frac{1}{x-1}+\frac{-2}{3}.\frac{-9}{20}=\frac{5}{2\left(1-x\right)}\)
\(\frac{1}{x-1}-\frac{-18}{60}=\frac{5}{2\left(1-x\right)}\)
\(\frac{1}{x-1}+\frac{3}{10}=\frac{5}{2\left(1-x\right)}\)
\(10\left(1-x\right)+3\left(x-1\right)\left(1-x\right)=25\left(x-1\right)\)
\(7-4x-3x^2=25x-25\)
\(7-4x-3x^2-25x+25=0\)
\(32-29x-3x^2=0\)
\(3x^2+29x-30=0\)
\(3x^2+32x-3x-32=0\)
\(x\left(3x+32\right)-\left(3x+32\right)=0\)
\(\left(3x+32\right)\left(x-1\right)=0\)
\(\orbr{\begin{cases}3x+32=0\\x-1=0\end{cases}}\)
\(\orbr{\begin{cases}x=-\frac{32}{3}\\x=1\end{cases}}\)
Q= \(\left(x^3-1-\frac{7-x^3}{3+x^3}\right).\frac{4}{x^5+3x^2}:\left(\frac{6x^4-24}{x^9+6x^6+9x^3}.\frac{2x}{3x^3+6}\right)\)
Rút gọn : \(\left(\frac{x}{x^2-36}+\frac{6-x}{x^2+6x}\right):\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\)
\(\left(\frac{x}{x^2-36}+\frac{6-x}{x^2+6x}\right):\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\)
đkxđ: \(x\ne0;x\ne\pm6\)
MTC=x(x+6)(x-6)
\(=\left[\frac{x}{\left(x+6\right)\left(x-6\right)}+\frac{6-x}{x\left(x+6\right)}\right]\cdot\frac{x\left(x+6\right)}{x\left(x-3\right)}-\frac{x}{x-6}\)
\(=\left[\frac{x^2}{x\left(x^2-36\right)}-\frac{\left(x-6\right)^2}{x\left(x^2-36\right)}\right]\cdot\frac{x\left(x+6\right)}{x\left(x-3\right)}-\frac{x}{x-6}\)
\(=\frac{12\left(x-3\right)}{x\left(x+6\right)\left(x-6\right)}\cdot\frac{x\left(x+6\right)}{x\left(x-3\right)}-\frac{x}{x-6}\)
\(=\frac{12}{x\left(x-6\right)}-\frac{x^2}{x\left(x-6\right)}\)
\(=\frac{12-x^2}{x\left(x-6\right)}\)
.....................
Cho biểu thức \(M=\left(1-\frac{6-2x^3}{x^6-9}\right).\frac{4}{x^5+3x^2}:\left(\frac{6x^6-24}{x^9+6x^6+9x^3}:\left(\frac{3x^2}{2}+\frac{3}{x}\right)\right)\)
a/ Rút gọn M
b/ Tìm các giá trị nguyên của x để M đạt GTLN. Tìm GTLN đó
$\frac{4x+3}{5}$ -$\frac{6x-2}{7}$ =$\frac{5x+4}{3}$ +3
b.
$\frac{x+4}{5}$ -x+4=$\frac{x}{3}$ -$\frac{x-2}{2}$
c.$\frac{5x+2}{6}$ -$\frac{8x-1}{3}$ =$\frac{4x+2}{5}$ -5
d.$\frac{2x+3}{3}$ =$\frac{5-4}{2}$
e. $\frac{5x+3}{12}$ =$\frac{1+2x}{9}$
f.$\frac{7x-1}{6}$ =$\frac{16-x}{5}$
g. $\frac{x-3}{5}$ =6-$\frac{1-2x}{3}$
h. $\frac{3x-2}{6}$ -5=$\frac{3-2(x+7)}{4}$
giúp vs ạ, cần gấp
d: =>4x+6=15x-12
=>4x-15x=-12-6=-18
=>-11x=-18
hay x=18/11
e: =>\(45x+27=12+24x\)
=>21x=-15
hay x=-5/7
f: =>35x-5=96-6x
=>41x=101
hay x=101/41
g: =>3(x-3)=90-5(1-2x)
=>3x-9=90-5+10x
=>3x-9=10x+85
=>-7x=94
hay x=-94/7
Rút gọn : A = \(\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right)\div\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\)
A = \(\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right):\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\)
= \(\left[\frac{x}{\left(x-6\right)\left(x+6\right)}-\frac{x-6}{x\left(x+6\right)}\right]:\frac{2\left(x-3\right)}{x\left(x+6\right)}-\frac{x}{x-6}\)
= \(\left[\frac{x^2}{x\left(x-6\right)\left(x+6\right)}-\frac{\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}\right]:\frac{2\left(x-3\right)}{x\left(x+6\right)}-\frac{x}{x-6}\)
= \(\frac{x^2-\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}:\frac{2\left(x-3\right)}{x\left(x+6\right)}-\frac{x}{x-6}\)
= \(\frac{\left(x-x+6\right)\left(x+x-6\right)}{x\left(x-6\right)\left(x+6\right)}:\frac{2\left(x-3\right)}{x\left(x+6\right)}-\frac{x}{x-6}\)
=
= \(\frac{x\left(2x-6\right)}{x\left(x-6\right)\left(x+6\right)}:\frac{2x-6}{x\left(x+6\right)}-\frac{x}{x-6}\)
= \(\frac{2x-6}{\left(x-6\right)\left(x+6\right)}.\frac{x\left(x+6\right)}{2x-6}\) \(-\frac{x}{x-6}\)
= \(\frac{x}{x-6}-\frac{x}{x-6}\)
= 0
C= (\(\frac{x+3}{x-3}+\frac{2x^2-6}{9-x^2}+\frac{x}{x+3}\)) :\(\frac{6x-12}{2x^2-18}\)
Tìm x nguyên để C nguyên
\(C=\frac{\left(x+3\right)^2-2x^2+6+x\left(x-3\right)}{x^2-9}.\frac{2x^2-18}{6x-12}\)\(\)
\(C=\frac{x^2+6x+9-2x^2+6+x^2-3x}{x^2-9}.\frac{2\left(x^2-9\right)}{6x-12}\)\(C=\frac{3x+15}{6x-12}.2=\frac{x+5}{x-2}=1+\frac{7}{x-2}\)
Để C nguyên =>(x-2) thuộc Ư(7) \(\Rightarrow x\in\left\{3;1;9;-5\right\}\)
Quy đồng mẫu thức các phân thức sau
\(\frac{x}{x^6-27};\frac{2x}{x^2-6x+9};\frac{1}{x^2+3x+9}\)
Giúp mình với ạ