chứng minh đa thức sau vô nghiệm : x^2 + (x-3)^2
Chứng minh rằng đa thức sau vô nghiệm :f(x)=x^2+2x+3
\(x^2+2x+3=0\)
\(=>\hept{\begin{cases}x^2=0\\2x=0\\3=0\end{cases}}\)
\(=>\hept{\begin{cases}x=0\\x=0\\3\end{cases}=>0+0+3\ne0}\)
=> \(x^2+2x+3\)vô nghiệm
\(f\left(x\right)=x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)
Ta có: \(\left(x+1\right)^2\ge0\) với mọi \(x\in R\)
\(\Rightarrow\left(x+1\right)^2+2\ge2>0\)với mọi \(x\in R\)
\(\Rightarrow x^2+2x+3>0\) với mọi \(x\in R\)
Vậy đa thức \(f\left(x\right)=x^2+2x+3\) vô nghiệm
chứng minh đa thức sau vô nghiệm : \(( x - 4 )^2 + ( x + 5 )^2\)
Ta có:
\(\left(x-4\right)^2\ge0\)
\(\left(x+5\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2+\left(x+5\right)^2=0\) khi
\(\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(x+5\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\x+5=0\end{matrix}\right.\) => không có giá trị x nào thỏa mãn
=> đa thức vô nghiệm
Chứng minh rằng đa thức sau vô nghiệm f(x) = x^2 - x - x + 2
tại f(x) = x2 -x -x + 2 =0 ta có
x(x-1) -(x-1) +1 =0
(x-1)(x-1) +1 =0
(x-1)2 +1 =0 (1)
Vì (x-1)2 \(\ge\)0
nên \(\left(x-1\right)^2+1\ge1>0\)
Vậy (1) là vô lí
Do đó đa thức f(x) = x^2 -x -x +2 vô nghiệm
Chứng minh đa thức sau vô nghiệm: x^2-5x+30
\(x^2-5x+30=x^2-2.\dfrac{5}{2}.x+\left(\dfrac{5}{2}\right)^2-\left(\dfrac{5}{2}\right)^2+30=\left(x-\dfrac{5}{2}\right)^2+\dfrac{95}{4}\ge\dfrac{95}{4}>0\) => Đa thức vô nghiệm \(\forall x\)
Chứng minh đa thức sau vô nghiệm :x^2 +2x +2
\(x^2+2x+2=x^2+x+x+1+1=x\left(x+1\right)+\left(x+1\right)+1\)
\(=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2+1\ge1\forall x\)
\(\Rightarrow x^2+2x+2\) vô nghiệm
chứng minh đa thức sau vô nghiệm:
(x - 4)^2 + (x + 5)^2
Nếu đa thức trên có nghiệm là n
<=>(n-4)2+(n+5)2=0
<=>(n-4)2=0 và (n+5)2=0
<=>n-4=0 và n+5=0
<=>n=4 và n=-5 (vô lý)
Vậy đa thức trên vô nghiệm
Chứng minh đa thức sau vô nghiệm X2+2006+X
\(x^2+2006+x\)
\(=x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{2}+\frac{4011}{2}\)
\(=x.\left(x+\frac{1}{2}\right)+\frac{1}{2}.\left(x+\frac{1}{2}\right)+\frac{4011}{2}\)
\(=\left(x+\frac{1}{2}\right).\left(x+\frac{1}{2}\right)+\frac{4011}{2}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{4011}{2}\)
\(\text{Vì }\left(x+\frac{1}{2}\right)^2\ge0\text{ nên }\left(x+\frac{1}{2}\right)^2+\frac{4011}{2}>0\)
\(\text{Hay }x^2+2006+x>0\)
\(\text{Vậy đa thức }x^2+2006+x\text{ vô nghiêm}\)
trời ơi ! cái này thì tui biết thừa ! chỉ cần coppy về rùi bấm vào văn bản máy fx rồi tự làm trên máy cũng được !
Chứng minh đa thức sau vô nghiệm
P(x)=x4+3x2+3
Vì x4 \(\ge\) 0 với mọi x \(\in\) R
3x2 \(\ge\) 0 với mọi x \(\in\) R
=>x4+3x2 \(\ge\) 0 với mọi x \(\in\) R
=>x4+3x2+3 \(\ge0+3>0\) với mọi x \(\in\) R
=>P(x) vô nghiệm
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Chứng minh đa thức sau vô nghiệm:
P(x)=x2+x+1
Ta có
x^2 luôn >= 0 với mọi x
x>=0 với mọi x
1>0
Nên đa thức P(x) vô nghiệm