Những câu hỏi liên quan
TF
Xem chi tiết
DR
29 tháng 7 2017 lúc 9:56

Cái này phải là cộng nhé bn, mk lm r

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

Bình luận (0)
3B
29 tháng 7 2017 lúc 9:56

\(=\frac{99}{100}\)

Bình luận (0)
PN
29 tháng 7 2017 lúc 10:03

\(\frac{99}{100}\)

Bình luận (0)
NL
Xem chi tiết
DD
18 tháng 4 2016 lúc 22:20

\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\)

\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow1-\frac{1}{100}=\frac{99}{100}\)

Vậy B = \(\frac{99}{100}\)

Bình luận (0)
TL
Xem chi tiết
DH
10 tháng 4 2018 lúc 16:51

\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\)

\(\Rightarrow B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

         \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

           \(=1-\frac{1}{100}\)

            \(=\frac{99}{100}\)

Bình luận (0)
NH
21 tháng 5 2019 lúc 20:09

\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(B=1-\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\left(\frac{1}{99}-\frac{1}{99}\right)-\frac{1}{100}\)

\(B=1-\frac{1}{100}=\frac{99}{100}\)

~ Hok tốt ~

Bình luận (0)
NN
Xem chi tiết
NA
7 tháng 5 2018 lúc 17:17

\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(B=1-\frac{1}{100}\)

\(B=\frac{99}{100}\)

Bình luận (0)
EC
7 tháng 5 2018 lúc 17:17

\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\) 

  \(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

  \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

  \(=1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\frac{1}{4}\right)+...+\left(-\frac{1}{99}+\frac{1}{99}\right)-\frac{1}{100}\)

    \(=1-\frac{1}{100}=\frac{99}{100}\)

Bình luận (0)
AK
7 tháng 5 2018 lúc 17:17

\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\)

\(\Rightarrow B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow B=1-\frac{1}{100}\)

\(\Rightarrow B=\frac{100}{100}-\frac{1}{100}\)

\(\Rightarrow B=\frac{99}{100}\)

Vậy \(B=\frac{99}{100}\)

Bình luận (0)
IP
Xem chi tiết
SG
25 tháng 6 2016 lúc 19:21

(1 - 2/6) × (1 - 2/12) × (1 - 2/20) × ... × (1 - 2/9900)

= 4/6 × 10/12 × 18/20 × ... × 9898/9900

= 1.4/2.3 × 2.5/3.4 × 3.6/4.5 × ... × 98.101/99.100

= 1.2.3...98/3.4.5...100 × 4.5.6...101/2.3.4...99

= 2/99.100 × 100.101/2.3

= 101/99×3 = 101/297

☆☆☆☆☆

Bình luận (0)
NM
Xem chi tiết
HM
31 tháng 5 2018 lúc 18:28

\(\frac{1}{2}+\frac{1}{6}\)\(+\frac{1}{12}\)\(+...+\frac{1}{9702}\)\(+\frac{1}{9900}\)

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}\)\(+...+\frac{1}{98\cdot99}\)\(\frac{1}{99\cdot100}\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\)\(\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{1}-\frac{1}{100}\)

\(\frac{100}{100}\)\(\frac{1}{100}\)

\(\frac{99}{100}\)

Bình luận (0)
IY
31 tháng 5 2018 lúc 17:29

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9702}+\frac{1}{9900}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

Bình luận (0)
TP
31 tháng 5 2018 lúc 17:32

Gọi dãy trên là A

\(\Leftrightarrow A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)

\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Leftrightarrow A=1-\frac{1}{100}+0+...+0\)

\(\Leftrightarrow A=\frac{99}{100}\)

Bình luận (0)
H24
Xem chi tiết
VI

\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
26 tháng 6 2020 lúc 9:47

\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
26 tháng 6 2020 lúc 9:48

\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{100}{100}-\frac{1}{100}\)

\(A=\frac{99}{100}\)

Linz

Bình luận (0)
 Khách vãng lai đã xóa
MT
Xem chi tiết
BN
Xem chi tiết
EC
22 tháng 6 2018 lúc 15:23

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}+x=100\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}+x=100\)

\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}+x\right)=100\)

\(\left(1-\frac{1}{100}\right)+x=100\)

\(\frac{99}{100}+x=100\)

\(x=100-\frac{99}{100}=\frac{9901}{100}\)

Bình luận (0)
H24
22 tháng 6 2018 lúc 15:21

\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}+x=100\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{2}{3}+....+\frac{1}{99}-\frac{1}{100}+x=100\)

\(\Rightarrow1-\frac{1}{100}+x=100\)

\(\Rightarrow\frac{99}{100}+x=100\)

\(\Rightarrow x=100-\frac{99}{100}\)

\(\Rightarrow x=\frac{1}{100}\)

~Chúc bạn hok tốt~

Bình luận (0)
VS
22 tháng 6 2018 lúc 15:22

1/1.2+1/2.3+1/3.4+1/4.5+...+1/99.100+x=100

1/1-1/2+1/3-1/4+1/4-1/5+...+1/99-1/100+x=100

1/1-1/100+x=100

 99/100+x=100

             x=100-99/100

             x=9901/100

Chúc bạn tốt nha!

Bình luận (0)